The truncation method for the solution of a class of variational inequalities

Alan E. Berger

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1976)

  • Volume: 10, Issue: R1, page 29-42
  • ISSN: 0764-583X

How to cite

top

Berger, Alan E.. "The truncation method for the solution of a class of variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R1 (1976): 29-42. <http://eudml.org/doc/193273>.

@article{Berger1976,
author = {Berger, Alan E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R1},
pages = {29-42},
publisher = {Dunod},
title = {The truncation method for the solution of a class of variational inequalities},
url = {http://eudml.org/doc/193273},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Berger, Alan E.
TI - The truncation method for the solution of a class of variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R1
SP - 29
EP - 42
LA - eng
UR - http://eudml.org/doc/193273
ER -

References

top
  1. [1] AGMON S., Lectures on elliptic boundary value problems, Princeton : D. Van Nostrand Company, Inc. 1965. Zbl0142.37401MR178246
  2. [2] BERGER A. E. CIMENT M. and ROGERS J. C. W., Numerical solution of a diffusion consumption problem with a free boundary, SIAM J, Num. Anal. 12, 646-672 (1975). Zbl0317.65032MR383779
  3. [3] BRÉZIS H., Problèmes unilatéraux, J. Math. Pures et Appl. 51, 1-168 (1972). Zbl0237.35001MR428137
  4. [4] DOUGLAS J. Jr., and DUPONT T., Galerkin methods for parabolic equations, SIAM J. Num. Anal. 7, 575-626 (1970). Zbl0224.35048MR277126
  5. [5] DUVAUT G. and LIONS, J. L., Les inéquations en mécanique et en physique, Paris : Dunod 1972. Zbl0298.73001MR464857
  6. [6] FALK R., Error estimates for the approximation of a class of variational inequalities, Math of Comp. 28, 963-971 (1974). Zbl0297.65061MR391502
  7. [7] GANTMACHER F. R., The theory of matrices, Vol. 1. New York : Chelsea Publishing Company 1959. Zbl0927.15001MR107649
  8. [8] HUNT C. and NASSIF N., Inéquations variationnelles et détermination de la charge d'espace de certains semi-conducteurs, C. R. Acad. Se. Paris, A 278, 1409-1412 (1974). Zbl0283.49020MR343769
  9. [9] ISAACSON E. and KELLER H. B., Analysis of numerical methods, New York : John Wiley & Sons, Inc., 1966. Zbl0168.13101MR201039
  10. [10] LEWY H. and STAMPACCHIA G., On the regularity of the solution of a variational inequality, Comm. on Pure and Appl, Math. 22, 153-188 (1969). Zbl0167.11501MR247551
  11. [11] LIONS J. L., Approximation numérique des inéquations d'évolution, Constructive Aspects of Functional Analysis edited by G. Geymonat, II Ciclo 1971-Centro Internazionale Matematico Estivo, Roma (1973). Zbl0299.65054
  12. [12] LIONS J. L. and STAMPACCHIA G., Variational inequalities, Comm. on Pure and Appl. Math. 20, 493-519 (1967). Zbl0152.34601MR216344
  13. [13] LIONS J L, TREMOLIERES R and GLOWINSKI R, Methodes generales d'approximation des problèmes d'inéquations stationnaires, Institut de Recherche d'Informatique et d'Automatique (March 1971) 
  14. [14] LIONS J L, TREMOLIERES R and GLOWINSKI R, Algorithmes d'optimisation, Institut de Recherche d'Informatique et d'Automatique (July 1971) 
  15. [15] Mosco U and STRANG G, One-sided approximation and varational inequalities, Bull Amer Math Soc 80,308-312 (1974) Zbl0278.35026MR331818
  16. [16] RICHTMYER R D and MORTON K WDifférence methods for initial-value problems New York Interscience Publishers, 1967 Zbl0155.47502MR220455
  17. [17] STRANG G, The finite element method-linear and nonlinear applications, to appear in the Proceedings of the International Congress of Mathematicians, Vancouver, Canada 1974 Zbl0334.65087MR423842
  18. [18] STRANG G and Fix G, An analysis of the finite element method, Englewood Chffs Prentice-Hall, Inc 1973 Zbl0356.65096MR443377
  19. [19] STROUD A H and SECREST D, Gaussian quadrature formulas Englewood Cliffs Prentice-Hall, Inc 1966 Zbl0156.17002MR202312
  20. [20] VARGA R S, Matrix iterative analysis, Englewood Cliffs Prentice-Hall, Inc 1965 Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.