Sur une formule de quadrature pour des fonctions entières

P. Olivier; Q. I. Rahman

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 3, page 517-537
  • ISSN: 0764-583X

How to cite

top

Olivier, P., and Rahman, Q. I.. "Sur une formule de quadrature pour des fonctions entières." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 517-537. <http://eudml.org/doc/193489>.

@article{Olivier1986,
author = {Olivier, P., Rahman, Q. I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {entire function of exponential type},
language = {fre},
number = {3},
pages = {517-537},
publisher = {Dunod},
title = {Sur une formule de quadrature pour des fonctions entières},
url = {http://eudml.org/doc/193489},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Olivier, P.
AU - Rahman, Q. I.
TI - Sur une formule de quadrature pour des fonctions entières
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 517
EP - 537
LA - fre
KW - entire function of exponential type
UR - http://eudml.org/doc/193489
ER -

References

top
  1. [1] R P BOASi, Jr, Entire functions, Academic Press, New York, 1954 Zbl0058.30201MR68627
  2. [2] R P BOAS, Summation formulas and band-limited signals, Tôhoku Math J 24 (1972), 121-125 Zbl0238.42009MR330915
  3. [3] C FRAPPIER et Q I RAHMAN, Une formule de quadrature pour les fonctions entières de type exponentiel, Les Annales des Sciences Mathématiques du Québec 10 (1986), Zbl0589.30024MR841119
  4. [4] R GERVAIS et Q I RAHMAN, An extension of Carlson's theorem for entire functions of exponential type, Trans Amer Math Soc 235 (1978), 387-394 Zbl0373.30025MR460633
  5. [5] R GERVAIS, Q I RAHMAN et G SCHMEISSER, Approximation by (0, 2)-interpolating entire functions of exponential type, J Math Anal Appl 28 (1981), 184-199 Zbl0469.30027MR626748
  6. [6] R GERVAIS, Representation and approximation of functions via (0, 2)-interpolation,J Approximation Theory (a paraître) Zbl0614.41001
  7. [7] Ch HERMITE, Sur la formule d'interpolation de Lagrange, J fur die reine und angewandte Math , 84 (1978), 70-79 Zbl09.0312.02JFM09.0312.02
  8. [8] L HORMANDER, Some inequalities for functions of exponential type, Math Scand 3 (1955), 21-27 Zbl0065.30302MR72210
  9. [9] R KRESS, On the general Hermite cardinal interpolation Math Comp 26 (1972),925-933 Zbl0264.30037MR320586
  10. [10] G SZEGO, Orthogonal polynomials, Amer Math Soc Colloquium Publications, vol XXIII, Troisième édition, Amer Math Soc , Providence, Rhodelsland, 1967 MR310533JFM65.0278.03
  11. [11] E C TITCHMARSH, Introduction to the theory of Fourier integrals, Deuxième édition, Oxford University Press, Londres, 1948 JFM63.0367.05
  12. [12] P TURAN, On the theory of the mechanical quadrature, Acta Scientiarum Mathematicarum 12 (1950), 30-37 Zbl0041.44417MR36797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.