Semi-global solution and exact boundary controllability for reducible quasilinear hyperbolic systems
Ta-Tsien Li; Bopeng Rao; Yi Jin
- Volume: 34, Issue: 2, page 399-408
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLi, Ta-Tsien, Rao, Bopeng, and Jin, Yi. "Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 399-408. <http://eudml.org/doc/193992>.
@article{Li2000,
author = {Li, Ta-Tsien, Rao, Bopeng, Jin, Yi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic systems; boundary control; exact controllability},
language = {eng},
number = {2},
pages = {399-408},
publisher = {Dunod},
title = {Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems},
url = {http://eudml.org/doc/193992},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Li, Ta-Tsien
AU - Rao, Bopeng
AU - Jin, Yi
TI - Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 399
EP - 408
LA - eng
KW - hyperbolic systems; boundary control; exact controllability
UR - http://eudml.org/doc/193992
ER -
References
top- [1] M. Cirià, Boundary controllability of nonlinear hyperbolic Systems. SIAM J. Control 7 (1969) 198-212. Zbl0182.20203MR254408
- [2] M. Cirinà, Nonlinear hyperbolic problems with solutions on preassigned sets. Michigan Math. J. 17 (1970) 193-209. Zbl0201.42702MR271546
- [3] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract Systems with applications to waves and plates boundary control problems. Appl. Math. Optim. 23 (1991) 109-154. Zbl0729.93023MR1086465
- [4] Li Ta-Tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems. Research in Applied Mathematics 32, Masson, John Wiley (1994). Zbl0841.35064MR1291392
- [5] Li Ta-Tsien and Zhang Bing-Yu, Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225 (1998) 289-311. Zbl0915.93007MR1639252
- [6] Li Ta-Tsien and Yu Wen-ci, Boundary Value Problems for Quasilinear Hyperbolic Systems. Duck University, Mathematics Series V (1985). Zbl0627.35001MR823237
- [7] J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson (1988) Vol. I.
- [8] K. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson, John Wiley (1994). Zbl0937.93003MR1359765
- [9] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639-739. Zbl0397.93001MR508380
- [10] E. Zuazua, Exact controllability for the semilinear wave equation. J, Math. Pures Appl. 69 (1990) 1-32. Zbl0638.49017MR1054122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.