Semi-global C 1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems

Ta-Tsien Li; Bopeng Rao; Yi Jin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 399-408
  • ISSN: 0764-583X

How to cite

top

Li, Ta-Tsien, Rao, Bopeng, and Jin, Yi. "Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 399-408. <http://eudml.org/doc/193992>.

@article{Li2000,
author = {Li, Ta-Tsien, Rao, Bopeng, Jin, Yi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic systems; boundary control; exact controllability},
language = {eng},
number = {2},
pages = {399-408},
publisher = {Dunod},
title = {Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems},
url = {http://eudml.org/doc/193992},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Li, Ta-Tsien
AU - Rao, Bopeng
AU - Jin, Yi
TI - Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 399
EP - 408
LA - eng
KW - hyperbolic systems; boundary control; exact controllability
UR - http://eudml.org/doc/193992
ER -

References

top
  1. [1] M. Cirià, Boundary controllability of nonlinear hyperbolic Systems. SIAM J. Control 7 (1969) 198-212. Zbl0182.20203MR254408
  2. [2] M. Cirinà, Nonlinear hyperbolic problems with solutions on preassigned sets. Michigan Math. J. 17 (1970) 193-209. Zbl0201.42702MR271546
  3. [3] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract Systems with applications to waves and plates boundary control problems. Appl. Math. Optim. 23 (1991) 109-154. Zbl0729.93023MR1086465
  4. [4] Li Ta-Tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems. Research in Applied Mathematics 32, Masson, John Wiley (1994). Zbl0841.35064MR1291392
  5. [5] Li Ta-Tsien and Zhang Bing-Yu, Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225 (1998) 289-311. Zbl0915.93007MR1639252
  6. [6] Li Ta-Tsien and Yu Wen-ci, Boundary Value Problems for Quasilinear Hyperbolic Systems. Duck University, Mathematics Series V (1985). Zbl0627.35001MR823237
  7. [7] J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson (1988) Vol. I. 
  8. [8] K. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson, John Wiley (1994). Zbl0937.93003MR1359765
  9. [9] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639-739. Zbl0397.93001MR508380
  10. [10] E. Zuazua, Exact controllability for the semilinear wave equation. J, Math. Pures Appl. 69 (1990) 1-32. Zbl0638.49017MR1054122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.