Lattice points in bodies of revolution
Acta Arithmetica (1998)
- Volume: 85, Issue: 3, page 265-277
- ISSN: 0065-1036
Access Full Article
topHow to cite
topFernando Chamizo. "Lattice points in bodies of revolution." Acta Arithmetica 85.3 (1998): 265-277. <http://eudml.org/doc/207168>.
@article{FernandoChamizo1998,
author = {Fernando Chamizo},
journal = {Acta Arithmetica},
keywords = {bodies of revolution; convex body; lattice points},
language = {eng},
number = {3},
pages = {265-277},
title = {Lattice points in bodies of revolution},
url = {http://eudml.org/doc/207168},
volume = {85},
year = {1998},
}
TY - JOUR
AU - Fernando Chamizo
TI - Lattice points in bodies of revolution
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 3
SP - 265
EP - 277
LA - eng
KW - bodies of revolution; convex body; lattice points
UR - http://eudml.org/doc/207168
ER -
References
top- [Ch-Iw] F. Chamizo and H. Iwaniec, On the sphere problem, Rev. Mat. Iberoamericana 11 (1995), 417-429.
- [Ch] J.-R. Chen, Improvement on the asymptotic formulas for the number of lattice points in a region of the three dimensions (II), Sci. Sinica 12 (1963), 751-764. Zbl0127.27503
- [Ga] C. F. Gauss, De nexu inter multitudinem classium, in quas formae binariae secundi gradus distribuntur, earumque determinantem [II] (1837); Werke, Band 2, 269-291.
- [Gr-Ko] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge Univ. Press, Cambridge, 1991. Zbl0713.11001
- [H-B] D. R. Heath-Brown, Lattice points in the sphere, preprint, 1997. (To appear in the Proceedings of the Number Theory Conference held in Zakopane, Poland, 1997.)
- [He] C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. 75 (1962), 81-92. Zbl0111.34803
- [Hl] E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1-36.
- [Hu] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. (3) 66 (1993), 279-301. Zbl0820.11060
- [Iv] A. Ivić, The Riemann Zeta-Function, Wiley, 1985.
- [Kr] E. Krätzel, Lattice Points, Kluwer, Dordrecht, 1988.
- E. Krätzel and W. G. Nowak, Lattice points in large convex bodies, II, Acta Arith. 62 (1992), 285-295. Zbl0769.11037
- [Sp] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. II, 2nd ed., Publish or Perish, 1979.
- [Ti] E. C. Titchmarsh, The lattice-points in a circle, Proc. London Math. Soc. (2) 38 (1934), 96-115. Zbl0010.10403
- [Vi] I. M. Vinogradov, On the number of integer points in a sphere, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 957-968 (in Russian). Zbl0116.03901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.