Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence
Wei-Min Wang[1]
- [1] Département de Mathématique Université Paris Sud 91405 Orsay Cedex
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 18, Issue: 1, page 1-18
Access Full Article
topAbstract
topHow to cite
topWang, Wei-Min. "Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence." Séminaire Équations aux dérivées partielles 18.1 (2009-2010): 1-18. <http://eudml.org/doc/251162>.
@article{Wang2009-2010,
abstract = {We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.},
affiliation = {Département de Mathématique Université Paris Sud 91405 Orsay Cedex},
author = {Wang, Wei-Min},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {delay; differential equation; periodic solution; topological degree},
language = {chi},
number = {1},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence},
url = {http://eudml.org/doc/251162},
volume = {18},
year = {2009-2010},
}
TY - JOUR
AU - Wang, Wei-Min
TI - Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 18
IS - 1
SP - 1
EP - 18
AB - We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.
LA - chi
KW - delay; differential equation; periodic solution; topological degree
UR - http://eudml.org/doc/251162
ER -
References
top- D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 230, 345-387 (1999). Zbl0928.35160MR1676714
- D. Bambusi, B. Grébert, Birkhoff normal form for PDE’s with tame modulus, Duke Math. J., 135, 507-567 (2006). Zbl1110.37057MR2272975
- J. Bourgain, Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, Geom. and Func. Anal., 3, 107-156 emae(1993). Zbl0787.35097MR1209299
- J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. and Func. Anal., 6, 201-230 (1996). Zbl0872.35007MR1384610
- J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148, 363-439 (1998). Zbl0928.35161MR1668547
- Nonlinear Schrödinger equations J. Bourgain, Park City Lectures, 1999.
- J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math, 80, 1-35 (2000). Zbl0964.35143MR1771522
- J. Bourgain, Green’s function estimates for latttice Schrödinger operators and applications, Ann. of Math. Studies, 158 (2005), Princeton University Press. Zbl1137.35001MR2100420
- J. Bourgain, W.-M. Wang, Quasi-periodic solutions of nonlinear random Schrödinger equations, J. Eur. Math. Soc., 10, 1-45 (2008). Zbl1148.35104MR2349895
- R. Carles Semi-classical analysis for nonlinear Schrödinger equations, World Scientific Publishing Co. Pte. Ltd. (2008). Zbl1153.35070MR2406566
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181, 39–113 (2010). Zbl1197.35265MR2651381
- W. Craig, C. E. Wayne, Newton’s method and periodic solutions of nonlinear equations, Commun. Pure Appl. Math., 46, 1409-1498 (1993). Zbl0794.35104MR1239318
- L. H. Eliasson, S. E. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math, 172, no. 1, 371-435 (2010). Zbl1201.35177MR2680422
- J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88, 151-184 (1983). Zbl0519.60066MR696803
- J. Geng, X. Xu, J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, preprint (2009). Zbl1213.37104MR2775905
- S. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic osillations for a nonlinear Schrödinger equation, Ann. of Math., 143, 149-179 (1996). Zbl0847.35130MR1370761
- I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, I, J. Reine Angew. Math., 147, 205-232 (1917).
- I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, II, J. Reine Angew. Math., 148, 122-145 (1918). Zbl46.0475.01
- W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations, J. Func. Anal., 254, 2926-2946 (2008). Zbl1171.35029MR2414227
- W.-M. Wang, Eigenfunction localization for the 2D periodic Schrödinger operator, Int. Math. Res. Notices (2010). Zbl1229.35154MR2806522
- W.-M. Wang, Supercritical nonlinear Schrödinger equations I : Quasi-periodic solutions, Arxiv: 1007.0154 (2010).
- W.-M. Wang, Supercritical nonlinear Schrödinger equations II : Almost global existence, Arxiv: 1007.0156 (2010).
- W.-M. Wang, Spectral methods in PDE, Milan J. Math., 78, no. 2 (2010). Zbl1222.35191MR2781852
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.