Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence

Wei-Min Wang[1]

  • [1] Département de Mathématique Université Paris Sud 91405 Orsay Cedex

Séminaire Équations aux dérivées partielles (2009-2010)

  • Volume: 18, Issue: 1, page 1-18

Abstract

top
We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.

How to cite

top

Wang, Wei-Min. "Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence." Séminaire Équations aux dérivées partielles 18.1 (2009-2010): 1-18. <http://eudml.org/doc/251162>.

@article{Wang2009-2010,
abstract = {We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.},
affiliation = {Département de Mathématique Université Paris Sud 91405 Orsay Cedex},
author = {Wang, Wei-Min},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {delay; differential equation; periodic solution; topological degree},
language = {chi},
number = {1},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence},
url = {http://eudml.org/doc/251162},
volume = {18},
year = {2009-2010},
}

TY - JOUR
AU - Wang, Wei-Min
TI - Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 18
IS - 1
SP - 1
EP - 18
AB - We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.
LA - chi
KW - delay; differential equation; periodic solution; topological degree
UR - http://eudml.org/doc/251162
ER -

References

top
  1. D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 230, 345-387 (1999). Zbl0928.35160MR1676714
  2. D. Bambusi, B. Grébert, Birkhoff normal form for PDE’s with tame modulus, Duke Math. J., 135, 507-567 (2006). Zbl1110.37057MR2272975
  3. J. Bourgain, Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, Geom. and Func. Anal., 3, 107-156 emae(1993). Zbl0787.35097MR1209299
  4. J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. and Func. Anal., 6, 201-230 (1996). Zbl0872.35007MR1384610
  5. J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148, 363-439 (1998). Zbl0928.35161MR1668547
  6. Nonlinear Schrödinger equations J. Bourgain, Park City Lectures, 1999. 
  7. J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math, 80, 1-35 (2000). Zbl0964.35143MR1771522
  8. J. Bourgain, Green’s function estimates for latttice Schrödinger operators and applications, Ann. of Math. Studies, 158 (2005), Princeton University Press. Zbl1137.35001MR2100420
  9. J. Bourgain, W.-M. Wang, Quasi-periodic solutions of nonlinear random Schrödinger equations, J. Eur. Math. Soc., 10, 1-45 (2008). Zbl1148.35104MR2349895
  10. R. Carles Semi-classical analysis for nonlinear Schrödinger equations, World Scientific Publishing Co. Pte. Ltd. (2008). Zbl1153.35070MR2406566
  11. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181, 39–113 (2010). Zbl1197.35265MR2651381
  12. W. Craig, C. E. Wayne, Newton’s method and periodic solutions of nonlinear equations, Commun. Pure Appl. Math., 46, 1409-1498 (1993). Zbl0794.35104MR1239318
  13. L. H. Eliasson, S. E. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math, 172, no. 1, 371-435 (2010). Zbl1201.35177MR2680422
  14. J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88, 151-184 (1983). Zbl0519.60066MR696803
  15. J. Geng, X. Xu, J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, preprint (2009). Zbl1213.37104MR2775905
  16. S. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic osillations for a nonlinear Schrödinger equation, Ann. of Math., 143, 149-179 (1996). Zbl0847.35130MR1370761
  17. I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, I, J. Reine Angew. Math., 147, 205-232 (1917). 
  18. I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, II, J. Reine Angew. Math., 148, 122-145 (1918). Zbl46.0475.01
  19. W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations, J. Func. Anal., 254, 2926-2946 (2008). Zbl1171.35029MR2414227
  20. W.-M. Wang, Eigenfunction localization for the 2D periodic Schrödinger operator, Int. Math. Res. Notices (2010). Zbl1229.35154MR2806522
  21. W.-M. Wang, Supercritical nonlinear Schrödinger equations I : Quasi-periodic solutions, Arxiv: 1007.0154 (2010). 
  22. W.-M. Wang, Supercritical nonlinear Schrödinger equations II : Almost global existence, Arxiv: 1007.0156 (2010). 
  23. W.-M. Wang, Spectral methods in PDE, Milan J. Math., 78, no. 2 (2010). Zbl1222.35191MR2781852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.