Some results on critical groups for a class of functionals defined on Sobolev Banach spaces

Silvia Cingolani; Giuseppina Vannella

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 4, page 199-203
  • ISSN: 1120-6330

Abstract

top
We present critical groups estimates for a functional f defined on the Banach space W 0 1 , p Ω , Ω bounded domain in R N , 2 < p < , associated to a quasilinear elliptic equation involving p -laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of f in each critical point, we compute the critical groups of f in each isolated critical point via Morse index.

How to cite

top

Cingolani, Silvia, and Vannella, Giuseppina. "Some results on critical groups for a class of functionals defined on Sobolev Banach spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.4 (2001): 199-203. <http://eudml.org/doc/252307>.

@article{Cingolani2001,
abstract = {We present critical groups estimates for a functional $f$ defined on the Banach space $W^\{1,p\}_\{0\}(\Omega)$, $\Omega$ bounded domain in $\mathbb\{R\}^\{N\}$, $2 < p < \infty$, associated to a quasilinear elliptic equation involving $p$-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of $f$ in each critical point, we compute the critical groups of $f$ in each isolated critical point via Morse index.},
author = {Cingolani, Silvia, Vannella, Giuseppina},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {p-laplacian; Critical groups estimates; Morse index; -Laplacian; critical groups estimates},
language = {eng},
month = {12},
number = {4},
pages = {199-203},
publisher = {Accademia Nazionale dei Lincei},
title = {Some results on critical groups for a class of functionals defined on Sobolev Banach spaces},
url = {http://eudml.org/doc/252307},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Cingolani, Silvia
AU - Vannella, Giuseppina
TI - Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/12//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 4
SP - 199
EP - 203
AB - We present critical groups estimates for a functional $f$ defined on the Banach space $W^{1,p}_{0}(\Omega)$, $\Omega$ bounded domain in $\mathbb{R}^{N}$, $2 < p < \infty$, associated to a quasilinear elliptic equation involving $p$-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of $f$ in each critical point, we compute the critical groups of $f$ in each isolated critical point via Morse index.
LA - eng
KW - p-laplacian; Critical groups estimates; Morse index; -Laplacian; critical groups estimates
UR - http://eudml.org/doc/252307
ER -

References

top
  1. Benci, V. - D'Avenia, P. - Fortunato, D. - Pisani, L., Solitons in several space dimensions: a Derrick's problem and infinitely many solutions. Arch. Rational Mech. Anal., 154, 2000, 297-324. Zbl0973.35161MR1785469DOI10.1007/s002050000101
  2. Chang, K., Morse Theory on Banach space and its applications to partial differential equations. Chin. Ann. of Math., 4B, 1983, 381-399. Zbl0534.58020MR742038
  3. Chang, K., Morse theory in nonlinear analysis. In: A. Ambrosetti - K.C. Chang - I. Ekeland (eds.), Nonlinear Functional Analysis and Applications to Differential Equations. World Scientific, Singapore1998. Zbl0960.58006MR1703528
  4. Cingolani, S. - Vannella, G., Critical groups computations on a class of Sobolev Banach spaces via Morse index. To appear. Zbl1023.58004MR1961517DOI10.1016/S0294-1449(02)00011-2
  5. Corvellec, J.N. - Degiovanni, M., Nontrivial solutions of quasilinear equations via nonsmooth Morse theory. J. Diff. Eqs., 136, 1997, 268-293. Zbl1139.35335MR1448826DOI10.1006/jdeq.1996.3254
  6. Lancelotti, S., Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Dip. Mat. Politecnico Torino 14/1999. Zbl1035.58010
  7. Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqs., 51, 1984, 126-150. Zbl0488.35017MR727034DOI10.1016/0022-0396(84)90105-0
  8. Tolksdorf, P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points. Comm. Part. Diff. Eqs., 8, 1983, 773-817. Zbl0515.35024MR700735DOI10.1080/03605308308820285
  9. Tromba, A.J., A general approach to Morse theory. J. Diff. Geometry, 12, 1977, 47-85. Zbl0344.58012MR464304
  10. Uhlenbeck, K., Morse theory on Banach manifolds. J. Funct. Anal., 10, 1972, 430-445. Zbl0241.58002MR377979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.