Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
Silvia Cingolani; Giuseppina Vannella
- Volume: 12, Issue: 4, page 199-203
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCingolani, Silvia, and Vannella, Giuseppina. "Some results on critical groups for a class of functionals defined on Sobolev Banach spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.4 (2001): 199-203. <http://eudml.org/doc/252307>.
@article{Cingolani2001,
abstract = {We present critical groups estimates for a functional $f$ defined on the Banach space $W^\{1,p\}_\{0\}(\Omega)$, $\Omega$ bounded domain in $\mathbb\{R\}^\{N\}$, $2 < p < \infty$, associated to a quasilinear elliptic equation involving $p$-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of $f$ in each critical point, we compute the critical groups of $f$ in each isolated critical point via Morse index.},
author = {Cingolani, Silvia, Vannella, Giuseppina},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {p-laplacian; Critical groups estimates; Morse index; -Laplacian; critical groups estimates},
language = {eng},
month = {12},
number = {4},
pages = {199-203},
publisher = {Accademia Nazionale dei Lincei},
title = {Some results on critical groups for a class of functionals defined on Sobolev Banach spaces},
url = {http://eudml.org/doc/252307},
volume = {12},
year = {2001},
}
TY - JOUR
AU - Cingolani, Silvia
AU - Vannella, Giuseppina
TI - Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/12//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 4
SP - 199
EP - 203
AB - We present critical groups estimates for a functional $f$ defined on the Banach space $W^{1,p}_{0}(\Omega)$, $\Omega$ bounded domain in $\mathbb{R}^{N}$, $2 < p < \infty$, associated to a quasilinear elliptic equation involving $p$-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of $f$ in each critical point, we compute the critical groups of $f$ in each isolated critical point via Morse index.
LA - eng
KW - p-laplacian; Critical groups estimates; Morse index; -Laplacian; critical groups estimates
UR - http://eudml.org/doc/252307
ER -
References
top- Benci, V. - D'Avenia, P. - Fortunato, D. - Pisani, L., Solitons in several space dimensions: a Derrick's problem and infinitely many solutions. Arch. Rational Mech. Anal., 154, 2000, 297-324. Zbl0973.35161MR1785469DOI10.1007/s002050000101
- Chang, K., Morse Theory on Banach space and its applications to partial differential equations. Chin. Ann. of Math., 4B, 1983, 381-399. Zbl0534.58020MR742038
- Chang, K., Morse theory in nonlinear analysis. In: A. Ambrosetti - K.C. Chang - I. Ekeland (eds.), Nonlinear Functional Analysis and Applications to Differential Equations. World Scientific, Singapore1998. Zbl0960.58006MR1703528
- Cingolani, S. - Vannella, G., Critical groups computations on a class of Sobolev Banach spaces via Morse index. To appear. Zbl1023.58004MR1961517DOI10.1016/S0294-1449(02)00011-2
- Corvellec, J.N. - Degiovanni, M., Nontrivial solutions of quasilinear equations via nonsmooth Morse theory. J. Diff. Eqs., 136, 1997, 268-293. Zbl1139.35335MR1448826DOI10.1006/jdeq.1996.3254
- Lancelotti, S., Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Dip. Mat. Politecnico Torino 14/1999. Zbl1035.58010
- Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqs., 51, 1984, 126-150. Zbl0488.35017MR727034DOI10.1016/0022-0396(84)90105-0
- Tolksdorf, P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points. Comm. Part. Diff. Eqs., 8, 1983, 773-817. Zbl0515.35024MR700735DOI10.1080/03605308308820285
- Tromba, A.J., A general approach to Morse theory. J. Diff. Geometry, 12, 1977, 47-85. Zbl0344.58012MR464304
- Uhlenbeck, K., Morse theory on Banach manifolds. J. Funct. Anal., 10, 1972, 430-445. Zbl0241.58002MR377979
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.