The Cauchy problem for wave equations with non Lipschitz coefficients; Application to continuation of solutions of some nonlinear wave equations

Ferruccio Colombini; Guy Métivier

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 2, page 177-220
  • ISSN: 0012-9593

Abstract

top
In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form L u : = j , k = 0 n y j ( a j , k y k u ) + j = 0 n { b j y j u + y j ( c j u ) } + d u = f , when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with respect to all the variables. This class of equation is invariant under changes of variables and therefore suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of propagation for the noncharacteristic Cauchy problem. This provides an invariant version of a previous paper of the first author with N. Lerner [6]. We also give an application of the method to a continuation theorem for nonlinear wave equations where the coefficients above depend on u : the smooth solution can be extended as long as it remains Log-Lipschitz.

How to cite

top

Colombini, Ferruccio, and Métivier, Guy. "The Cauchy problem for wave equations with non Lipschitz coefficients; Application to continuation of solutions of some nonlinear wave equations." Annales scientifiques de l'École Normale Supérieure 41.2 (2008): 177-220. <http://eudml.org/doc/272155>.

@article{Colombini2008,
abstract = {In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form $ L u := \sum _\{j, k = 0\}^n \partial _\{y_j\} \big ( a_\{j, k\} \partial _\{y_k\} u \big ) + \sum _\{j=0\}^n \lbrace b_j \partial _\{y_j\} u + \partial _\{y_j\} ( c_j u)\rbrace + d u = f,$ when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with respect to all the variables. This class of equation is invariant under changes of variables and therefore suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of propagation for the noncharacteristic Cauchy problem. This provides an invariant version of a previous paper of the first author with N. Lerner [6]. We also give an application of the method to a continuation theorem for nonlinear wave equations where the coefficients above depend on $u$: the smooth solution can be extended as long as it remains Log-Lipschitz.},
author = {Colombini, Ferruccio, Métivier, Guy},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local uniqueness; local existence; Log-Lipschitz coefficients; finite speed of propagation; blow-up criterion for a nonlinear wave equation},
language = {eng},
number = {2},
pages = {177-220},
publisher = {Société mathématique de France},
title = {The Cauchy problem for wave equations with non Lipschitz coefficients; Application to continuation of solutions of some nonlinear wave equations},
url = {http://eudml.org/doc/272155},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Colombini, Ferruccio
AU - Métivier, Guy
TI - The Cauchy problem for wave equations with non Lipschitz coefficients; Application to continuation of solutions of some nonlinear wave equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 2
SP - 177
EP - 220
AB - In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form $ L u := \sum _{j, k = 0}^n \partial _{y_j} \big ( a_{j, k} \partial _{y_k} u \big ) + \sum _{j=0}^n \lbrace b_j \partial _{y_j} u + \partial _{y_j} ( c_j u)\rbrace + d u = f,$ when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with respect to all the variables. This class of equation is invariant under changes of variables and therefore suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of propagation for the noncharacteristic Cauchy problem. This provides an invariant version of a previous paper of the first author with N. Lerner [6]. We also give an application of the method to a continuation theorem for nonlinear wave equations where the coefficients above depend on $u$: the smooth solution can be extended as long as it remains Log-Lipschitz.
LA - eng
KW - local uniqueness; local existence; Log-Lipschitz coefficients; finite speed of propagation; blow-up criterion for a nonlinear wave equation
UR - http://eudml.org/doc/272155
ER -

References

top
  1. [1] S. Alinhac, Blowup for nonlinear hyperbolic equations, Progress in Nonlinear Differential Equations and their Applications, 17, Birkhäuser, 1995. Zbl0820.35001MR1339762
  2. [2] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981), 209–246. Zbl0495.35024MR631751
  3. [3] M. Cicognani & F. Colombini, Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem, J. Differential Equations221 (2006), 143–157. Zbl1097.35092
  4. [4] R. R. Coifman & Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Soc. Math. France, 1978. Zbl0483.35082
  5. [5] F. Colombini, E. De Giorgi & S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci.6 (1979), 511–559. Zbl0417.35049
  6. [6] F. Colombini & N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J.77 (1995), 657–698. Zbl0840.35067
  7. [7] L. Hörmander, Linear partial differential operators, Die Grund. Math. Wiss., Bd. 116, Springer, 1963. Zbl0108.09301
  8. [8] E. Jannelli, Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl.140 (1985), 133–145. Zbl0583.35074MR807634
  9. [9] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer, 1984. Zbl0537.76001MR748308
  10. [10] G. Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d’espace, Trans. Amer. Math. Soc.296 (1986), 431–479. Zbl0619.35075MR846593
  11. [11] G. Métivier, Small viscosity and boundary layer methods. Theory, stability analysis, and applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2004. Zbl1133.35001MR2151414
  12. [12] G. Métivier & K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc. 175 (2005). Zbl1074.35066
  13. [13] Y. Meyer, Remarques sur un théorème de J.-M. Bony, in Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), Rend. Circ. Mat. Palermo (2), suppl. 1, 1981, 1–20. Zbl0473.35021MR639462
  14. [14] T. Nishitani, Sur les équations hyperboliques à coefficients höldériens en t et de classe de Gevrey en x , Bull. Sci. Math.107 (1983), 113–138. Zbl0536.35042MR704720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.