A uniform dichotomy for generic SL ( 2 , ) cocycles over a minimal base

Artur Avila; Jairo Bochi

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 3, page 407-417
  • ISSN: 0037-9484

Abstract

top
We consider continuous SL ( 2 , ) -cocycles over a minimal homeomorphism of a compact set K of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.

How to cite

top

Avila, Artur, and Bochi, Jairo. "A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base." Bulletin de la Société Mathématique de France 135.3 (2007): 407-417. <http://eudml.org/doc/272427>.

@article{Avila2007,
abstract = {We consider continuous $\{\rm SL\}(2,\{\mathbb \{R\}\})$-cocycles over a minimal homeomorphism of a compact set $K$ of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.},
author = {Avila, Artur, Bochi, Jairo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {cocycle; minimal homeomorphism; uniform hyperbolicity; Lyapunov exponents},
language = {eng},
number = {3},
pages = {407-417},
publisher = {Société mathématique de France},
title = {A uniform dichotomy for generic $\{\rm SL\}(2,\{\mathbb \{R\}\})$ cocycles over a minimal base},
url = {http://eudml.org/doc/272427},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Avila, Artur
AU - Bochi, Jairo
TI - A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 3
SP - 407
EP - 417
AB - We consider continuous ${\rm SL}(2,{\mathbb {R}})$-cocycles over a minimal homeomorphism of a compact set $K$ of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.
LA - eng
KW - cocycle; minimal homeomorphism; uniform hyperbolicity; Lyapunov exponents
UR - http://eudml.org/doc/272427
ER -

References

top
  1. [1] J. Bochi – « Genericity of zero Lyapunov exponents », Ergodic Theory Dynam. Systems22 (2002), p. 1667–1696. Zbl1023.37006MR1944399
  2. [2] J. Bochi & M. Viana – « The Lyapunov exponents of generic volume-preserving and symplectic maps », Ann. of Math. (2) 161 (2005), p. 1423–1485. Zbl1101.37039MR2180404
  3. [3] S. J. Eigen & V. S. Prasad – « Multiple Rokhlin tower theorem: a simple proof », New York J. Math. 3A (1997/98), p. 11–14. Zbl0894.28009MR1604573
  4. [4] A. Furman – « On the multiplicative ergodic theorem for uniquely ergodic systems », Ann. Inst. H. Poincaré Probab. Statist.33 (1997), p. 797–815. Zbl0892.60011MR1484541
  5. [5] N. ĐìnhCống – « A generic bounded linear cocycle has simple Lyapunov spectrum », Ergodic Theory Dynam. Systems 25 (2005), p. 1775–1797. Zbl1130.37312MR2183293
  6. [6] J.-I. Nagata – Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. Zbl0518.54002MR208571
  7. [7] J.-C. Yoccoz – « Some questions and remarks about SL ( 2 , 𝐑 ) cocycles », in Modern dynamical systems and applications, Cambridge Univ. Press, 2004, p. 447–458. Zbl1148.37306MR2093316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.