Function spaces and shape theories

Jerzy Dydak; Sławomir Nowak

Fundamenta Mathematicae (2002)

  • Volume: 171, Issue: 2, page 117-154
  • ISSN: 0016-2736

Abstract

top
The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings to sSh(pro-Top) by localizing pro-Top at strong shape equivalences. A map f:X → Y is a shape equivalence if and only if the induced function f*:[Y,P] → [X,P] is a bijection for all P ∈ ANR. A map f:X → Y of k-spaces is a strong shape equivalence if and only if the induced map f*: Map(Y,P) → Map(X,P) is a weak homotopy equivalence for all P ∈ ANR. One generalizes the concept of being a shape equivalence to morphisms of pro-HoTop without any problem and the only difficulty is to show that a localization of pro-HoTop at shape equivalences is a category (which amounts to showing that the morphisms form a set). Due to peculiarities of function spaces, extending the concept of strong shape equivalence to morphisms of pro-Top is more involved. However, it can be done and we show that the corresponding localization exists. One can introduce the concept of a super shape equivalence f:X → Y of topological spaces as a map such that the induced map f*: Map(Y,P) → Map(X,P) is a homotopy equivalence for all P ∈ ANR, and one can extend it to morphisms of pro-Top. However, the authors do not know if the corresponding localization exists. Here are applications of our methods: Theorem. A map f:X → Y of k-spaces is a strong shape equivalence if and only if f × i d Q : X × k Q Y × k Q is a shape equivalence for each CW complex Q. Theorem. Suppose f: X → Y is a map of topological spaces. (a) f is a shape equivalence if and only if the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is a finite CW complex. (b) If f is a strong shape equivalence, then the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex. (c) If X, Y are k-spaces and the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex, then f is a strong shape equivalence.

How to cite

top

Jerzy Dydak, and Sławomir Nowak. "Function spaces and shape theories." Fundamenta Mathematicae 171.2 (2002): 117-154. <http://eudml.org/doc/282758>.

@article{JerzyDydak2002,
abstract = {The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings to sSh(pro-Top) by localizing pro-Top at strong shape equivalences. A map f:X → Y is a shape equivalence if and only if the induced function f*:[Y,P] → [X,P] is a bijection for all P ∈ ANR. A map f:X → Y of k-spaces is a strong shape equivalence if and only if the induced map f*: Map(Y,P) → Map(X,P) is a weak homotopy equivalence for all P ∈ ANR. One generalizes the concept of being a shape equivalence to morphisms of pro-HoTop without any problem and the only difficulty is to show that a localization of pro-HoTop at shape equivalences is a category (which amounts to showing that the morphisms form a set). Due to peculiarities of function spaces, extending the concept of strong shape equivalence to morphisms of pro-Top is more involved. However, it can be done and we show that the corresponding localization exists. One can introduce the concept of a super shape equivalence f:X → Y of topological spaces as a map such that the induced map f*: Map(Y,P) → Map(X,P) is a homotopy equivalence for all P ∈ ANR, and one can extend it to morphisms of pro-Top. However, the authors do not know if the corresponding localization exists. Here are applications of our methods: Theorem. A map f:X → Y of k-spaces is a strong shape equivalence if and only if $f × id_Q: X ×_k Q → Y ×_k Q$ is a shape equivalence for each CW complex Q. Theorem. Suppose f: X → Y is a map of topological spaces. (a) f is a shape equivalence if and only if the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is a finite CW complex. (b) If f is a strong shape equivalence, then the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex. (c) If X, Y are k-spaces and the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex, then f is a strong shape equivalence.},
author = {Jerzy Dydak, Sławomir Nowak},
journal = {Fundamenta Mathematicae},
keywords = {homotopy; k-spaces; strong shape},
language = {eng},
number = {2},
pages = {117-154},
title = {Function spaces and shape theories},
url = {http://eudml.org/doc/282758},
volume = {171},
year = {2002},
}

TY - JOUR
AU - Jerzy Dydak
AU - Sławomir Nowak
TI - Function spaces and shape theories
JO - Fundamenta Mathematicae
PY - 2002
VL - 171
IS - 2
SP - 117
EP - 154
AB - The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings to sSh(pro-Top) by localizing pro-Top at strong shape equivalences. A map f:X → Y is a shape equivalence if and only if the induced function f*:[Y,P] → [X,P] is a bijection for all P ∈ ANR. A map f:X → Y of k-spaces is a strong shape equivalence if and only if the induced map f*: Map(Y,P) → Map(X,P) is a weak homotopy equivalence for all P ∈ ANR. One generalizes the concept of being a shape equivalence to morphisms of pro-HoTop without any problem and the only difficulty is to show that a localization of pro-HoTop at shape equivalences is a category (which amounts to showing that the morphisms form a set). Due to peculiarities of function spaces, extending the concept of strong shape equivalence to morphisms of pro-Top is more involved. However, it can be done and we show that the corresponding localization exists. One can introduce the concept of a super shape equivalence f:X → Y of topological spaces as a map such that the induced map f*: Map(Y,P) → Map(X,P) is a homotopy equivalence for all P ∈ ANR, and one can extend it to morphisms of pro-Top. However, the authors do not know if the corresponding localization exists. Here are applications of our methods: Theorem. A map f:X → Y of k-spaces is a strong shape equivalence if and only if $f × id_Q: X ×_k Q → Y ×_k Q$ is a shape equivalence for each CW complex Q. Theorem. Suppose f: X → Y is a map of topological spaces. (a) f is a shape equivalence if and only if the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is a finite CW complex. (b) If f is a strong shape equivalence, then the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex. (c) If X, Y are k-spaces and the induced function f*: [Y,M] → [X,M] is a bijection for all M = Map(Q,P), where P ∈ ANR and Q is an arbitrary CW complex, then f is a strong shape equivalence.
LA - eng
KW - homotopy; k-spaces; strong shape
UR - http://eudml.org/doc/282758
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.