On the real secondary classes of transversely holomorphic foliations

Taro Asuke

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 995-1017
  • ISSN: 0373-0956

Abstract

top
In this paper we study the real secondary classes of transversely holomorphic foliations. We define a homomorphism from the space H * ( WO 2 q ) of the real secondary classes to the space H * ( WU q ) of the complex secondary classes that corresponds to forgetting the transverse holomorphic structure. By using this homomorphism we show, for example, the decomposition of the Godbillon-Vey class into the imaginary part of the Bott class and the first Chern class of the complex normal bundle of the foliation. We show also that Heitsch’s examples do not admit any transverse holomorphic structure.

How to cite

top

Asuke, Taro. "On the real secondary classes of transversely holomorphic foliations." Annales de l'institut Fourier 50.3 (2000): 995-1017. <http://eudml.org/doc/75447>.

@article{Asuke2000,
abstract = {In this paper we study the real secondary classes of transversely holomorphic foliations. We define a homomorphism from the space $H^*(\{\rm WO\}_\{2q\})$ of the real secondary classes to the space $H^*(\{\rm WU\}_q)$ of the complex secondary classes that corresponds to forgetting the transverse holomorphic structure. By using this homomorphism we show, for example, the decomposition of the Godbillon-Vey class into the imaginary part of the Bott class and the first Chern class of the complex normal bundle of the foliation. We show also that Heitsch’s examples do not admit any transverse holomorphic structure.},
author = {Asuke, Taro},
journal = {Annales de l'institut Fourier},
keywords = {foliations; transverse holomorphic structure; characteristic classes},
language = {eng},
number = {3},
pages = {995-1017},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the real secondary classes of transversely holomorphic foliations},
url = {http://eudml.org/doc/75447},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Asuke, Taro
TI - On the real secondary classes of transversely holomorphic foliations
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 995
EP - 1017
AB - In this paper we study the real secondary classes of transversely holomorphic foliations. We define a homomorphism from the space $H^*({\rm WO}_{2q})$ of the real secondary classes to the space $H^*({\rm WU}_q)$ of the complex secondary classes that corresponds to forgetting the transverse holomorphic structure. By using this homomorphism we show, for example, the decomposition of the Godbillon-Vey class into the imaginary part of the Bott class and the first Chern class of the complex normal bundle of the foliation. We show also that Heitsch’s examples do not admit any transverse holomorphic structure.
LA - eng
KW - foliations; transverse holomorphic structure; characteristic classes
UR - http://eudml.org/doc/75447
ER -

References

top
  1. [1] T. ASUKE, Invariance of the Godbillon-Vey class by C1-diffeomorphisms for higher codimensional foliations, Jour. Math. Soc. Japan, 51 (1999), 655-660. Zbl0931.57021MR2000c:57052
  2. [2] T. ASUKE, On the real secondary classes of transversely holomorphic foliations, University of Tokyo, Thesis. Zbl0964.58018
  3. [3] T. ASUKE, On the real secondary classes of transversely holomorphic foliations II, preprint. 
  4. [4] T. ASUKE, A remark on the Bott class, preprint. 
  5. [5] P. BAUM and R. BOTT, Singularities of Holomorphic Foliations, Jour. Diff. Geom., 7 (1972), 279-342. Zbl0268.57011MR51 #14092
  6. [6] Y. BENOIST, Actions propres sur les espaces homogenes reductifs, Annals of Math., 144 (1996), 315-347. Zbl0868.22013MR97j:22023
  7. [7] R. BOTT, On the Lefschetz Formula and Exotic Characteristic Classes, Symposia Math., 10 (1972), 95-105. Zbl0254.57013MR50 #14778
  8. [8] R. BOTT, R. GILTER, I.M. JAMES, Lectures on Algebraic and Differential Topology, Lecture Notes in Mathematics, No. 279, Springer-Verlag, 1972. Zbl0233.00013MR49 #6216
  9. [9] R. BOTT, A. HAEFLIGER, On characteristic classes of Г-foliations, Bull. Amer. Math. Soc., 78 (1972), 1039-1044. Zbl0262.57010MR46 #6370
  10. [10] C. GODBILLON, Séminaire Bourbaki, 1972/1973, n° 421, Lecture Notes in Mathematics, No. 383, 69-87. Zbl0296.17010
  11. [11] J. HEITSCH, Deformations of Secondary Characteristic Classes, Topology, 12 (1973), 381-388. Zbl0268.57010MR47 #9639
  12. [12] J. HEITSCH, Independent variation of secondary classes, Annals of Math., 108 (1978), 421-460. Zbl0398.57007MR80b:57022
  13. [13] S. HURDER, Independent Rigid Secondary Classes for Holomorphic Foliations, Invent. Math., 66 (1982), 313-323. Zbl0489.57006MR83h:57036
  14. [14] S. HURDER and A. KATOK, Ergodic theory and Weil measures for foliations, Annals of Math., 126 (1987), 221-275. Zbl0645.57021MR89d:57042
  15. [15] D. HUSEMOLLER, Fibre Bundles, Graduate Texts in Mathematics 20, Springer-Verlag, 1993. Zbl0794.55001
  16. [16] F. W. KAMBER and P. TONDEUR, Foliated Bundles and Characteristic Classes, Lecture Notes in Mathematics, No. 493, Springer-Verlag, 1975. Zbl0308.57011MR53 #6587
  17. [17] S. KOBAYASHI, K. NOMIZU, Foundations of Differential Geometry, Vol. II, John Wiley & Sons, Inc. Zbl0119.37502
  18. [18] T. KOBAYASHI, Discontinuous Groups Acting on Homogeneous Spaces of Reductive Type, Representation Theory of Lie Groups and Lie Algebras, World Scientific, 1992, 59-75. Zbl1193.22010
  19. [19] F. LABOURIE, S. MOZES, and R. J. ZIMMER, On manifolds locally modelled on non-Riemannian homogeneous spaces, Geom. Funct. Anal., 5 (1995), 955-965. Zbl0852.22011MR97j:53053
  20. [20] S. MORITA, Discontinuous Invariants of Foliations, Advanced Studies in Pure Mathematics 5, 1985, 169-193. Zbl0678.57011MR88f:57052
  21. [21] S. MORITA, private communication. 
  22. [22] H. V. PITTIE, Characteristic classes of foliations, Research Notes in Mathematics, 10, Pitman Publishing, 1976. Zbl0338.57010MR56 #13229
  23. [23] G. RABY, Invariance des classes de Godbillon-Vey par C1-diffeomorphisms, Ann. Inst. Fourier, Grenoble, 38-1 (1988), 205-213. Zbl0596.57018MR89j:57023
  24. [24] O. H. RASMUSSEN, Exotic Characteristic Classes for Holomorphic Foliations, Invent. Math., 46 (1978), 153-171. Zbl0361.57017MR80d:57015
  25. [25] O. H. RASMUSSEN, Continuous Variation on Foliations in Codimension Two, Topology, 19 (1980), 335-349. Zbl0443.57021MR82i:57027
  26. [26] W. THURSTON, Noncobordant foliations of S3, Bull. Amer. Math. Soc., 78 (1972), 511-514. Zbl0266.57004MR45 #7741
  27. [27] T. ASUKE, The Godbillon-Vey class of transversely holomorphic foliations, preprint. Zbl1206.57032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.