Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés

Christian Léonard

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 2, page 237-262
  • ISSN: 0246-0203

How to cite

top

Léonard, Christian. "Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés." Annales de l'I.H.P. Probabilités et statistiques 22.2 (1986): 237-262. <http://eudml.org/doc/77279>.

@article{Léonard1986,
author = {Léonard, Christian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {evolution of a system of particles; law of large numbers; convergence of the empirical measure; martingale problem},
language = {fre},
number = {2},
pages = {237-262},
publisher = {Gauthier-Villars},
title = {Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés},
url = {http://eudml.org/doc/77279},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Léonard, Christian
TI - Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 237
EP - 262
LA - fre
KW - evolution of a system of particles; law of large numbers; convergence of the empirical measure; martingale problem
UR - http://eudml.org/doc/77279
ER -

References

top
  1. [Ald] D.J. Aldous, Exchangeability and related topics. École d'été de Saint-Flour, 1983. LNM1117 (Springer-Verlag). Zbl0562.60042MR883646
  2. [Bou] N. Bourbaki, Intégration. Chapitre 9. Hermann, Paris, 1969. MR276436
  3. [Daw] D.A. Dawson, Critical Dynamics and Fluctuations for a Mean-Field Model of Cooperative Behavior. Journal of Statistical Physics, t. 31, no. 1, 1983. MR711469
  4. [GSk] I.I. Gihmann and A.V. Skorohod, Stochastic differential equations. Springer-Verlag, 1972. Zbl0242.60003MR346904
  5. [JoM] A. Joffe and M. Métivier, Weak convergence of séquences of semimartingales with applications to multiple branching processes. Advances in Applied Probability (à paraître), 1985. Zbl0595.60008
  6. [Kac] M. Kac, Probability and related topics in the physical sciences, New York: Interscience, 1958. Zbl0087.33003MR102849
  7. [Leo] C. Léonard, Thèse de 3e cycle. Université d'Orsay (France), 1984. 
  8. [McK] H.P. McKean, Jr.Propagation of chaos for a class of non-linear parabolic equations. Catholic University (Washington D. C.). Lecture Series in Differential equations, t. 7, 1967. Zbl0181.44401MR233437
  9. [Oel] K. Oeschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes. The Annals of Probability, t. 12, no. 2, 1984, p. 458-479. Zbl0544.60097MR735849
  10. [Szn] A.S. Sznitman, Nonlinear Reflecting Diffusion Process, and the Propagation of Chaos and Fluctuations Associated. Journal of Functional Analysis, t. 56, 1984, p. 311-336. Zbl0547.60080MR743844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.