Cut points and diffusive random walks in random environment

Erwin Bolthausen; Alain-Sol Sznitman; Ofer Zeitouni

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 3, page 527-555
  • ISSN: 0246-0203

How to cite

top

Bolthausen, Erwin, Sznitman, Alain-Sol, and Zeitouni, Ofer. "Cut points and diffusive random walks in random environment." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 527-555. <http://eudml.org/doc/77772>.

@article{Bolthausen2003,
author = {Bolthausen, Erwin, Sznitman, Alain-Sol, Zeitouni, Ofer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {multidimensional random walks; law of large numbers; functional central limit theorem; diffusive walks},
language = {eng},
number = {3},
pages = {527-555},
publisher = {Elsevier},
title = {Cut points and diffusive random walks in random environment},
url = {http://eudml.org/doc/77772},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Bolthausen, Erwin
AU - Sznitman, Alain-Sol
AU - Zeitouni, Ofer
TI - Cut points and diffusive random walks in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 527
EP - 555
LA - eng
KW - multidimensional random walks; law of large numbers; functional central limit theorem; diffusive walks
UR - http://eudml.org/doc/77772
ER -

References

top
  1. [1] E. Bolthausen, A.S. Sznitman, On the static and dynamic points of views for certain random walks in random environment, Methods and Applications of Analysis, to appear, http://www.math.ethz.ch/~sznitman/preprint.shtml. Zbl1079.60079MR2023130
  2. [2] J. Bricmont, A. Kupiainen, Random walks in asymmetric random environments, Comm. Math. Phys.142 (2) (1991) 345-420. Zbl0734.60112MR1137068
  3. [3] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. Zbl0397.54003MR193606
  4. [4] R. Durrett, Probability: Theory and Examples, Wadsworth and Brooks/Cole, Pacific Grove, 1991. Zbl0709.60002MR1068527
  5. [5] P. Erdös, S.J. Taylor, Some intersection properties of random walks paths, Acta Math. Acad. Sci. Hungar.11 (1960) 231-248. Zbl0096.33302MR126299
  6. [6] S.M. Ethier, T.G. Kurtz, Markov Processes, Wiley, New York, 1986. Zbl0592.60049MR838085
  7. [7] G.F. Lawler, Weak convergence of a random walk in a random environment, Comm. Math. Phys.87 (1982) 81-87. Zbl0502.60056MR680649
  8. [8] G.F. Lawler, Intersections of Random Walks, Birkhäuser, Basel, 1991. Zbl0925.60078MR1117680
  9. [9] J. Neveu, Processus ponctuels, Ecole d'Eté de Probabilités de St. Flour 1976, Lecture Notes in Math., 598, Springer, New York, 1977. Zbl0439.60044MR474493
  10. [10] F. Solomon, Random walk in a random environment, Ann. Probab.3 (1) (1975) 1-31. Zbl0305.60029
  11. [11] F. Spitzer, Principles of Random Walk, Springer, Berlin, 1976. Zbl0359.60003
  12. [12] A.S. Sznitman, Slowdown estimates and central limit theorem for random walks in random environment, J. Eur. Math. Soc.2 (2000) 93-143. Zbl0976.60097MR1763302
  13. [13] A.S. Sznitman, On a class of transient random walks in random environment, Ann. Probab.29 (2) (2001) 723-764. Zbl1017.60106MR1849176
  14. [14] A.S. Sznitman, On new examples of ballistic random walks in random environment, Ann. Probab.31 (1) (2003). Zbl1017.60104MR1959794
  15. [15] A.S. Sznitman, M.P.W. Zerner, A law of large numbers for random walks in random environment, Ann. Probab.27 (4) (1999) 1851-1869. Zbl0965.60100MR1742891
  16. [16] O. Zeitouni, Notes of Saint Flour lectures 2001, Preprint, http://www-ee.technion.ac.il/~zeitouni/ps/notes1.ps. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.