Symmetry for exterior elliptic problems and two conjectures in potential theory
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 2, page 135-156
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSirakov, Boyan. "Symmetry for exterior elliptic problems and two conjectures in potential theory." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 135-156. <http://eudml.org/doc/78515>.
@article{Sirakov2001,
author = {Sirakov, Boyan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {method of moving planes; topological methods; exterior domains},
language = {eng},
number = {2},
pages = {135-156},
publisher = {Elsevier},
title = {Symmetry for exterior elliptic problems and two conjectures in potential theory},
url = {http://eudml.org/doc/78515},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Sirakov, Boyan
TI - Symmetry for exterior elliptic problems and two conjectures in potential theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 135
EP - 156
LA - eng
KW - method of moving planes; topological methods; exterior domains
UR - http://eudml.org/doc/78515
ER -
References
top- [1] Alessandrini G, A symmetry theorem for condensers, Math. Meth. Appl. Sc.15 (1992) 315-320. Zbl0756.35118MR1170529
- [2] Amick C.J, Fraenkel L.E, Uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal.92 (1986) 91-119. Zbl0609.76018MR816615
- [3] Aftalion A, Busca J, Radial symmetry for overdetermined elliptic problems in exterior domains, Arch. Rat. Mech. Anal.143 (1998) 195-206. Zbl0911.35008MR1650014
- [4] Berestycki H, Nirenberg L, On the method of moving planes and the sliding method, Bull. Soc. Brazil Mat. Nova Ser.22 (1991) 1-37. Zbl0784.35025MR1159383
- [5] Castro A, Shivaji R, Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations14 (8&9) (1989) 1091-1100. Zbl0688.35025MR1017065
- [6] Gidas B, Ni W.-M, Nirenberg L, Symmetry and related properties via the maximum principle, Comm. Math. Phys.6 (1981) 883-901. Zbl0425.35020MR544879
- [7] Gilbarg D, Trudinger N, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [8] Li C, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations16 (1991) 585-615. Zbl0741.35014MR1113099
- [9] Pucci P, Serrin J, Zou H, A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl.78 (4) (1999) 769-789. Zbl0952.35045MR1715341
- [10] Reichel W., Radial symmetry by moving planes for semilinear elliptic BVP's on annuli and other non-convex domains, in: Bandle C. et al. (Eds.), Progress in PDE's: Elliptic and Parabolic Problems, Pitman Res. Notes, Vol. 325, pp. 164–182. Zbl0839.35047
- [11] Reichel W, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rat. Mech. Anal.137 (1997) 381-394. Zbl0891.35006MR1463801
- [12] Reichel W, Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwendungen15 (1996) 619-635. Zbl0857.35010MR1406079
- [13] Serrin J, A symmetry theorem in potential theory, Arch. Rat. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
- [14] Serrin J, Zou H, Symmetry of ground states of quasilinear elliptic equations, Arch. Rat. Mech. Anal.148 (4) (1999) 265-290. Zbl0940.35079MR1716665
- [15] Willms N.B, Gladwell G, Siegel D, Symmetry theorems for some overdetermined boundary-value problems on ring domains, Z. Angew. Math. Phys.45 (1994) 556-579. Zbl0807.35099MR1289661
- [16] Vazquez J.-L, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. and Optimisation12 (1984) 191-202. Zbl0561.35003MR768629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.