A priori estimates for solutions of fully nonlinear special lagrangian equations
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 2, page 261-270
- ISSN: 0294-1449
Access Full Article
topHow to cite
topYuan, Yu. "A priori estimates for solutions of fully nonlinear special lagrangian equations." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 261-270. <http://eudml.org/doc/78520>.
@article{Yuan2001,
author = {Yuan, Yu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {eigenvalues of the Hessian; minimizing graph},
language = {eng},
number = {2},
pages = {261-270},
publisher = {Elsevier},
title = {A priori estimates for solutions of fully nonlinear special lagrangian equations},
url = {http://eudml.org/doc/78520},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Yuan, Yu
TI - A priori estimates for solutions of fully nonlinear special lagrangian equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 261
EP - 270
LA - eng
KW - eigenvalues of the Hessian; minimizing graph
UR - http://eudml.org/doc/78520
ER -
References
top- [1] Caffarelli L.A, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math.130 (1989) 189-213. Zbl0692.35017MR1005611
- [2] Caffarelli L.A, Cabré X, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [3] Caffarelli L.A, Crandall M.G, Kocan M, Świech A, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math.49 (1996) 365-397. Zbl0854.35032MR1376656
- [4] Caffarelli L.A, Nirenberg L, Spruck J, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math.155 (1985) 261-301. Zbl0654.35031MR806416
- [5] Caffarelli L.A., Yuan Y., A Priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., to appear. Zbl0965.35045MR1369586
- [6] Calabi E, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom.1 (1967) 111-125. Zbl0171.20504MR233294
- [7] Chiarenza F, Frasca M, Longo P, W2,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc.336 (1993) 841-853. Zbl0818.35023MR1088476
- [8] Evans L.C, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.35 (3) (1982) 333-363. Zbl0469.35022MR649348
- [9] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [10] Harvey R, Lawson H.B, Calibrated geometry, Acta Math.148 (1982) 47-157. Zbl0584.53021MR666108
- [11] Huang Q.-B., On the regularity of solutions to fully nonlinear elliptic equations via Liouville property, Proc. Amer. Math. Soc., to appear. Zbl1011.35047MR1896027
- [12] Krylov N.V, Boundedly nonhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat.46 (3) (1982) 487-523, in Russian; English translation in Math. USSR Izv. 20 (1983) 459–492. Zbl0529.35026
- [13] Simon L, Lectures on Geometric Measure Theory, Proc. C. M. A., Austr. Nat. Univ., 3, 1983. Zbl0546.49019MR756417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.