A priori estimates for solutions of fully nonlinear special lagrangian equations

Yu Yuan

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 2, page 261-270
  • ISSN: 0294-1449

How to cite

top

Yuan, Yu. "A priori estimates for solutions of fully nonlinear special lagrangian equations." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 261-270. <http://eudml.org/doc/78520>.

@article{Yuan2001,
author = {Yuan, Yu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {eigenvalues of the Hessian; minimizing graph},
language = {eng},
number = {2},
pages = {261-270},
publisher = {Elsevier},
title = {A priori estimates for solutions of fully nonlinear special lagrangian equations},
url = {http://eudml.org/doc/78520},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Yuan, Yu
TI - A priori estimates for solutions of fully nonlinear special lagrangian equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 261
EP - 270
LA - eng
KW - eigenvalues of the Hessian; minimizing graph
UR - http://eudml.org/doc/78520
ER -

References

top
  1. [1] Caffarelli L.A, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math.130 (1989) 189-213. Zbl0692.35017MR1005611
  2. [2] Caffarelli L.A, Cabré X, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
  3. [3] Caffarelli L.A, Crandall M.G, Kocan M, Świech A, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math.49 (1996) 365-397. Zbl0854.35032MR1376656
  4. [4] Caffarelli L.A, Nirenberg L, Spruck J, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math.155 (1985) 261-301. Zbl0654.35031MR806416
  5. [5] Caffarelli L.A., Yuan Y., A Priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., to appear. Zbl0965.35045MR1369586
  6. [6] Calabi E, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom.1 (1967) 111-125. Zbl0171.20504MR233294
  7. [7] Chiarenza F, Frasca M, Longo P, W2,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc.336 (1993) 841-853. Zbl0818.35023MR1088476
  8. [8] Evans L.C, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.35 (3) (1982) 333-363. Zbl0469.35022MR649348
  9. [9] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  10. [10] Harvey R, Lawson H.B, Calibrated geometry, Acta Math.148 (1982) 47-157. Zbl0584.53021MR666108
  11. [11] Huang Q.-B., On the regularity of solutions to fully nonlinear elliptic equations via Liouville property, Proc. Amer. Math. Soc., to appear. Zbl1011.35047MR1896027
  12. [12] Krylov N.V, Boundedly nonhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat.46 (3) (1982) 487-523, in Russian; English translation in Math. USSR Izv. 20 (1983) 459–492. Zbl0529.35026
  13. [13] Simon L, Lectures on Geometric Measure Theory, Proc. C. M. A., Austr. Nat. Univ., 3, 1983. Zbl0546.49019MR756417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.