The Paneitz equation in hyperbolic space

Hans-Christoph Grunau; Mohameden Ould Ahmedou; Wolfgang Reichel

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 847-864
  • ISSN: 0294-1449

How to cite

top

Grunau, Hans-Christoph, Ould Ahmedou, Mohameden, and Reichel, Wolfgang. "The Paneitz equation in hyperbolic space." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 847-864. <http://eudml.org/doc/78816>.

@article{Grunau2008,
author = {Grunau, Hans-Christoph, Ould Ahmedou, Mohameden, Reichel, Wolfgang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Paneitz equation; conformal metric; hyperbolic space; -curvature; non-uniqueness},
language = {eng},
number = {5},
pages = {847-864},
publisher = {Elsevier},
title = {The Paneitz equation in hyperbolic space},
url = {http://eudml.org/doc/78816},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Grunau, Hans-Christoph
AU - Ould Ahmedou, Mohameden
AU - Reichel, Wolfgang
TI - The Paneitz equation in hyperbolic space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 847
EP - 864
LA - eng
KW - Paneitz equation; conformal metric; hyperbolic space; -curvature; non-uniqueness
UR - http://eudml.org/doc/78816
ER -

References

top
  1. [1] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  2. [2] Chang S.-Y.A., On a fourth-order partial differential equation in conformal geometry, in: Christ M., (Eds.), Harmonic Analysis and Partial Differential Equations. Essays in honor of Alberto P. Calderón's 75th birthday, Proceedings of a Conference, University of Chicago, February 1996, Chicago Lectures in Mathematics, The University of Chicago Press, 1999, pp. 127-150. Zbl0982.53036MR1743859
  3. [3] Chang S.-Y.A., Non-Linear Elliptic Equations in Conformal Geometry, Zurich Lectures in Advanced Mathematics, European Math. Soc. (EMS), Zürich, 2004. Zbl1064.53018MR2104700
  4. [4] Chang S.-Y.A., Chen W., A note on a class of higher order conformally covariant equations, Discrete Contin. Dyn. Syst.7 (2001) 275-281. Zbl1014.35025MR1808400
  5. [5] Chang S.-Y.A., Yang P.C., Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math.142 (1995) 171-212. Zbl0842.58011MR1338677
  6. [6] Chang S.-Y.A., Yang P.C., On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett.4 (1997) 91-102. Zbl0903.53027MR1432813
  7. [7] Chang S.-Y.A., Yang P.C., On a fourth order curvature invariant, in: Branson T. (Ed.), Spectral Problems in Geometry and Arithmetic, NSF-CBMS Conference on Spectral Problems in Geometry and Arithmetic, Iowa City, August 18–22, 1997, Contemp. Math., vol. 237, American Mathematical Society, Providence, RI, 1999, pp. 9-28. Zbl0982.53035MR1710786
  8. [8] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-622. Zbl0768.35025MR1121147
  9. [9] Y.S. Choi, X. Xu, Nonlinear biharmonic equations with negative exponents, preprint, 1999. MR2467021
  10. [10] Diaz J.I., Lazzo M., Schmidt P.G., Large radial solutions of a polyharmonic equation with superlinear growth, Electronic J. Differential Equations, Conference16 (2007) 103-128. Zbl1154.35035MR2414108
  11. [11] J.I. Diaz, M. Lazzo, P.G. Schmidt, Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth, in preparation. Zbl1307.35063
  12. [12] Djadli Z., Hebey E., Ledoux M., Paneitz-type operators and applications, Duke Math. J.104 (2000) 129-169. Zbl0998.58009MR1769728
  13. [13] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math., in press. Zbl1186.53050
  14. [14] Djadli Z., Malchiodi A., Ould Ahmedou M., Prescribing a fourth order conformal invariant on the standard sphere. I: A perturbation result, Commun. Contemp. Math.4 (2002) 375-408. Zbl1023.58020MR1918751
  15. [15] Djadli Z., Malchiodi A., Ould Ahmedou M., Prescribing a fourth order conformal invariant on the standard sphere. II: Blow up analysis and applications, Ann. Sc. Norm. Super Pisa, Cl. Sci. (5)1 (2002) 387-434. Zbl1150.53012MR1991145
  16. [16] Felli V., Existence of conformal metrics on S n with prescribed fourth-order invariant, Adv. Differential Equations7 (2002) 47-76. Zbl1054.53061MR1867704
  17. [17] Ferrero A., Grunau H.-Ch., The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity, J. Differential Equations234 (2007) 582-606. Zbl1189.35099MR2300668
  18. [18] Gazzola F., Grunau H.-Ch., Radial entire solutions for supercritical biharmonic equations, Math. Ann.334 (2006) 905-936. Zbl1152.35034MR2209261
  19. [19] Gursky M., The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys.207 (1999) 131-143. Zbl0988.58013MR1724863
  20. [20] Hartman P., Ordinary Differential Equation, John Wiley and Sons, New York, 1964. MR171038
  21. [21] Lin C.-S., A classification of solutions of a conformally invariant fourth order equation in R n , Comment. Math. Helv.73 (1998) 206-231. Zbl0933.35057MR1611691
  22. [22] Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations, in: Ahlfors L. (Ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272. Zbl0298.35018MR358078
  23. [23] Mallet-Paret J., Smith H.L., The Poincaré–Bendixson theorem for monotone cyclic feedback systems, J. Dynamics Differential Equations2 (1990) 367-421. Zbl0712.34060MR1073471
  24. [24] Mazzeo R., Pacard F., Poincaré–Einstein metrics and the Schouten tensor, Pacific J. Math.212 (2003) 169-185. Zbl1056.53028MR2016976
  25. [25] McKenna P.J., Reichel W., Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electronic J. Differential Equations2003 (37) (2003) 1-13. Zbl1109.35321MR1971023
  26. [26] Obata M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan14 (1962) 333-340. Zbl0115.39302MR142086
  27. [27] Pohožaev S.I., Eigenfunctions of the equation Δ u + λ f u = 0 , Soviet Math. Dokl.6 (1965) 1408-1411, English translation from, Dokl. Akad. Nauk SSSR165 (1965) 36-39. Zbl0141.30202MR192184
  28. [28] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J.35 (1986) 681-703. Zbl0625.35027MR855181
  29. [29] Robert F., Positive solutions for a fourth order equation invariant under isometries, Proc. Amer. Math. Soc.131 (2003) 1423-1431. Zbl1112.58037MR1949872
  30. [30] Wei J., Xu X., On conformal deformations of metrics on S n , J. Funct. Anal.157 (1998) 292-325. Zbl0924.58120MR1637945
  31. [31] Wei J., Xu X., Classification of solutions of higher order conformally invariant equations, Math. Ann.313 (1999) 207-228. Zbl0940.35082MR1679783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.