The Paneitz equation in hyperbolic space
Hans-Christoph Grunau; Mohameden Ould Ahmedou; Wolfgang Reichel
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 5, page 847-864
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGrunau, Hans-Christoph, Ould Ahmedou, Mohameden, and Reichel, Wolfgang. "The Paneitz equation in hyperbolic space." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 847-864. <http://eudml.org/doc/78816>.
@article{Grunau2008,
author = {Grunau, Hans-Christoph, Ould Ahmedou, Mohameden, Reichel, Wolfgang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Paneitz equation; conformal metric; hyperbolic space; -curvature; non-uniqueness},
language = {eng},
number = {5},
pages = {847-864},
publisher = {Elsevier},
title = {The Paneitz equation in hyperbolic space},
url = {http://eudml.org/doc/78816},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Grunau, Hans-Christoph
AU - Ould Ahmedou, Mohameden
AU - Reichel, Wolfgang
TI - The Paneitz equation in hyperbolic space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 847
EP - 864
LA - eng
KW - Paneitz equation; conformal metric; hyperbolic space; -curvature; non-uniqueness
UR - http://eudml.org/doc/78816
ER -
References
top- [1] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
- [2] Chang S.-Y.A., On a fourth-order partial differential equation in conformal geometry, in: Christ M., (Eds.), Harmonic Analysis and Partial Differential Equations. Essays in honor of Alberto P. Calderón's 75th birthday, Proceedings of a Conference, University of Chicago, February 1996, Chicago Lectures in Mathematics, The University of Chicago Press, 1999, pp. 127-150. Zbl0982.53036MR1743859
- [3] Chang S.-Y.A., Non-Linear Elliptic Equations in Conformal Geometry, Zurich Lectures in Advanced Mathematics, European Math. Soc. (EMS), Zürich, 2004. Zbl1064.53018MR2104700
- [4] Chang S.-Y.A., Chen W., A note on a class of higher order conformally covariant equations, Discrete Contin. Dyn. Syst.7 (2001) 275-281. Zbl1014.35025MR1808400
- [5] Chang S.-Y.A., Yang P.C., Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math.142 (1995) 171-212. Zbl0842.58011MR1338677
- [6] Chang S.-Y.A., Yang P.C., On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett.4 (1997) 91-102. Zbl0903.53027MR1432813
- [7] Chang S.-Y.A., Yang P.C., On a fourth order curvature invariant, in: Branson T. (Ed.), Spectral Problems in Geometry and Arithmetic, NSF-CBMS Conference on Spectral Problems in Geometry and Arithmetic, Iowa City, August 18–22, 1997, Contemp. Math., vol. 237, American Mathematical Society, Providence, RI, 1999, pp. 9-28. Zbl0982.53035MR1710786
- [8] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-622. Zbl0768.35025MR1121147
- [9] Y.S. Choi, X. Xu, Nonlinear biharmonic equations with negative exponents, preprint, 1999. MR2467021
- [10] Diaz J.I., Lazzo M., Schmidt P.G., Large radial solutions of a polyharmonic equation with superlinear growth, Electronic J. Differential Equations, Conference16 (2007) 103-128. Zbl1154.35035MR2414108
- [11] J.I. Diaz, M. Lazzo, P.G. Schmidt, Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth, in preparation. Zbl1307.35063
- [12] Djadli Z., Hebey E., Ledoux M., Paneitz-type operators and applications, Duke Math. J.104 (2000) 129-169. Zbl0998.58009MR1769728
- [13] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math., in press. Zbl1186.53050
- [14] Djadli Z., Malchiodi A., Ould Ahmedou M., Prescribing a fourth order conformal invariant on the standard sphere. I: A perturbation result, Commun. Contemp. Math.4 (2002) 375-408. Zbl1023.58020MR1918751
- [15] Djadli Z., Malchiodi A., Ould Ahmedou M., Prescribing a fourth order conformal invariant on the standard sphere. II: Blow up analysis and applications, Ann. Sc. Norm. Super Pisa, Cl. Sci. (5)1 (2002) 387-434. Zbl1150.53012MR1991145
- [16] Felli V., Existence of conformal metrics on with prescribed fourth-order invariant, Adv. Differential Equations7 (2002) 47-76. Zbl1054.53061MR1867704
- [17] Ferrero A., Grunau H.-Ch., The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity, J. Differential Equations234 (2007) 582-606. Zbl1189.35099MR2300668
- [18] Gazzola F., Grunau H.-Ch., Radial entire solutions for supercritical biharmonic equations, Math. Ann.334 (2006) 905-936. Zbl1152.35034MR2209261
- [19] Gursky M., The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys.207 (1999) 131-143. Zbl0988.58013MR1724863
- [20] Hartman P., Ordinary Differential Equation, John Wiley and Sons, New York, 1964. MR171038
- [21] Lin C.-S., A classification of solutions of a conformally invariant fourth order equation in , Comment. Math. Helv.73 (1998) 206-231. Zbl0933.35057MR1611691
- [22] Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations, in: Ahlfors L. (Ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272. Zbl0298.35018MR358078
- [23] Mallet-Paret J., Smith H.L., The Poincaré–Bendixson theorem for monotone cyclic feedback systems, J. Dynamics Differential Equations2 (1990) 367-421. Zbl0712.34060MR1073471
- [24] Mazzeo R., Pacard F., Poincaré–Einstein metrics and the Schouten tensor, Pacific J. Math.212 (2003) 169-185. Zbl1056.53028MR2016976
- [25] McKenna P.J., Reichel W., Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electronic J. Differential Equations2003 (37) (2003) 1-13. Zbl1109.35321MR1971023
- [26] Obata M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan14 (1962) 333-340. Zbl0115.39302MR142086
- [27] Pohožaev S.I., Eigenfunctions of the equation , Soviet Math. Dokl.6 (1965) 1408-1411, English translation from, Dokl. Akad. Nauk SSSR165 (1965) 36-39. Zbl0141.30202MR192184
- [28] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J.35 (1986) 681-703. Zbl0625.35027MR855181
- [29] Robert F., Positive solutions for a fourth order equation invariant under isometries, Proc. Amer. Math. Soc.131 (2003) 1423-1431. Zbl1112.58037MR1949872
- [30] Wei J., Xu X., On conformal deformations of metrics on , J. Funct. Anal.157 (1998) 292-325. Zbl0924.58120MR1637945
- [31] Wei J., Xu X., Classification of solutions of higher order conformally invariant equations, Math. Ann.313 (1999) 207-228. Zbl0940.35082MR1679783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.