Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities

Hassan Ibrahim

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 415-435
  • ISSN: 0294-1449

How to cite

top

Ibrahim, Hassan. "Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 415-435. <http://eudml.org/doc/78849>.

@article{Ibrahim2009,
author = {Ibrahim, Hassan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {scalar conservation laws; viscosity solution; entropy solution; extension and restriction method},
language = {eng},
number = {2},
pages = {415-435},
publisher = {Elsevier},
title = {Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities},
url = {http://eudml.org/doc/78849},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Ibrahim, Hassan
TI - Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 415
EP - 435
LA - eng
KW - scalar conservation laws; viscosity solution; entropy solution; extension and restriction method
UR - http://eudml.org/doc/78849
ER -

References

top
  1. [1] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Springer-Verlag, Paris, 1994. Zbl0819.35002MR1613876
  2. [2] Brézis H., Analyse fonctionelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, xiv+234 pp. Zbl0511.46001MR697382
  3. [3] M. Cannone, A. El Hajj, R. Monneau, F. Ribaud, Global existence of a system of non-linear transport equations describing the dynamics of dislocation densities, 2007, submitted for publication. Zbl1193.35218
  4. [4] Caselles V., Scalar conservation laws and Hamilton–Jacobi equations in one space variables, Nonlinear Anal.18 (5) (1992) 461-469. Zbl0755.35067MR1152721
  5. [5] Cleveringa H.H.M., Van der Giessen E., Needleman A., Acta Materialia54 (1997) 3164. 
  6. [6] Corrias L., Falcone M., Natalini R., Numerical schemes for conservation laws via Hamilton–Jacobi equations, Math. Comp.64 (210) (1995) 555-580, S13–S18. Zbl0827.65085MR1265013
  7. [7] Crandall M.G., Lions P.L., On existence and uniqueness of solutions of Hamilton–Jacobi equations, Nonlinear Anal. Methods Appl.10 (4) (1986) 353-370. Zbl0603.35016MR836671
  8. [8] El Hajj A., Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics, SIAM J. Math. Anal.39 (3) (2007) 965-986. Zbl1149.35056MR2349873
  9. [9] A. El Hajj, N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocations densities dynamics, Math. Comp. (2006), in press. Zbl1133.35097
  10. [10] Evans L.C., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR2597943
  11. [11] Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chin. Ann. of Math. Ser. B16 (1) (1995) 1-14. Zbl0830.35077MR1338923
  12. [12] Gimse T., Risebro N.H., A note on reservoir simulation for heterogeneous porous media, Transport Porous Media10 (1993) 257-270. 
  13. [13] Groma I., Balogh P., Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation, Acta Materialia47 (1999) 3647-3654. 
  14. [14] Groma I., Czikor F.F., Zaiser M., Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia51 (2003) 1271-1281. 
  15. [15] Hirth J.R., Lothe L., Theory of Dislocations, second ed., Krieger, Malabar, FL, 1992. 
  16. [16] Ishii H., Existence and uniqueness of solutions of Hamilton–Jacobi equations, Funkcial. Ekvac.29 (1986) 167-188. Zbl0614.35011MR877427
  17. [17] H. Ibrahim, Rapport de recherche du CERMICS 2007-338. 
  18. [18] Karlsen K.H., Risebro N.H., A note on front tracking and the equivalence between viscosity solutions of Hamilton–Jacobi equations and entropy solutions of scalar conservation laws, Nonlinear Anal.50 (2002) 455-469. Zbl1010.35026MR1923522
  19. [19] Kruškov S.N., First order quasilinear equations with several space variables, Math. USSR Sb.10 (1970) 217-243. Zbl0215.16203
  20. [20] Kruškov S.N., The Cauchy problem in the large for non-linear equations and for certain first-order quasilinear systems with several variables, Dokl. Akad. Nauk SSSR155 (1964) 743-746. Zbl0138.34702MR164137
  21. [21] Lax P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, PA, 1973, v+48 pp. Zbl0268.35062MR350216
  22. [22] Ley O., Lower-bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagating fronts, Adv. Differential Equations6 (5) (2001) 547-576. Zbl1015.35031MR1826721
  23. [23] Lions P.L., Generalized Solutions of Hamilton–Jacobi equations, Pitman, Boston, MA, 1982, Advanced Publishing Program. Zbl0497.35001MR667669
  24. [24] Nabarro F.R.N., Theory of Crystal Dislocations, Oxford, Clarendon Press, 1969. 
  25. [25] Ostrov D., Solutions of Hamilton–Jacobi equations and scalar conservation laws with discontinuous space–time dependence, J. Differential Equations182 (2002) 51-77. Zbl1009.35015MR1912069
  26. [26] Whitham G.B., Linear and Nonlinear Waves, Wiley, New York, 1974. Zbl0373.76001MR483954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.