Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 415-435
- ISSN: 0294-1449
Access Full Article
topHow to cite
topIbrahim, Hassan. "Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 415-435. <http://eudml.org/doc/78849>.
@article{Ibrahim2009,
author = {Ibrahim, Hassan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {scalar conservation laws; viscosity solution; entropy solution; extension and restriction method},
language = {eng},
number = {2},
pages = {415-435},
publisher = {Elsevier},
title = {Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities},
url = {http://eudml.org/doc/78849},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Ibrahim, Hassan
TI - Existence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 415
EP - 435
LA - eng
KW - scalar conservation laws; viscosity solution; entropy solution; extension and restriction method
UR - http://eudml.org/doc/78849
ER -
References
top- [1] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Springer-Verlag, Paris, 1994. Zbl0819.35002MR1613876
- [2] Brézis H., Analyse fonctionelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, xiv+234 pp. Zbl0511.46001MR697382
- [3] M. Cannone, A. El Hajj, R. Monneau, F. Ribaud, Global existence of a system of non-linear transport equations describing the dynamics of dislocation densities, 2007, submitted for publication. Zbl1193.35218
- [4] Caselles V., Scalar conservation laws and Hamilton–Jacobi equations in one space variables, Nonlinear Anal.18 (5) (1992) 461-469. Zbl0755.35067MR1152721
- [5] Cleveringa H.H.M., Van der Giessen E., Needleman A., Acta Materialia54 (1997) 3164.
- [6] Corrias L., Falcone M., Natalini R., Numerical schemes for conservation laws via Hamilton–Jacobi equations, Math. Comp.64 (210) (1995) 555-580, S13–S18. Zbl0827.65085MR1265013
- [7] Crandall M.G., Lions P.L., On existence and uniqueness of solutions of Hamilton–Jacobi equations, Nonlinear Anal. Methods Appl.10 (4) (1986) 353-370. Zbl0603.35016MR836671
- [8] El Hajj A., Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics, SIAM J. Math. Anal.39 (3) (2007) 965-986. Zbl1149.35056MR2349873
- [9] A. El Hajj, N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocations densities dynamics, Math. Comp. (2006), in press. Zbl1133.35097
- [10] Evans L.C., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR2597943
- [11] Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chin. Ann. of Math. Ser. B16 (1) (1995) 1-14. Zbl0830.35077MR1338923
- [12] Gimse T., Risebro N.H., A note on reservoir simulation for heterogeneous porous media, Transport Porous Media10 (1993) 257-270.
- [13] Groma I., Balogh P., Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation, Acta Materialia47 (1999) 3647-3654.
- [14] Groma I., Czikor F.F., Zaiser M., Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia51 (2003) 1271-1281.
- [15] Hirth J.R., Lothe L., Theory of Dislocations, second ed., Krieger, Malabar, FL, 1992.
- [16] Ishii H., Existence and uniqueness of solutions of Hamilton–Jacobi equations, Funkcial. Ekvac.29 (1986) 167-188. Zbl0614.35011MR877427
- [17] H. Ibrahim, Rapport de recherche du CERMICS 2007-338.
- [18] Karlsen K.H., Risebro N.H., A note on front tracking and the equivalence between viscosity solutions of Hamilton–Jacobi equations and entropy solutions of scalar conservation laws, Nonlinear Anal.50 (2002) 455-469. Zbl1010.35026MR1923522
- [19] Kruškov S.N., First order quasilinear equations with several space variables, Math. USSR Sb.10 (1970) 217-243. Zbl0215.16203
- [20] Kruškov S.N., The Cauchy problem in the large for non-linear equations and for certain first-order quasilinear systems with several variables, Dokl. Akad. Nauk SSSR155 (1964) 743-746. Zbl0138.34702MR164137
- [21] Lax P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, PA, 1973, v+48 pp. Zbl0268.35062MR350216
- [22] Ley O., Lower-bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagating fronts, Adv. Differential Equations6 (5) (2001) 547-576. Zbl1015.35031MR1826721
- [23] Lions P.L., Generalized Solutions of Hamilton–Jacobi equations, Pitman, Boston, MA, 1982, Advanced Publishing Program. Zbl0497.35001MR667669
- [24] Nabarro F.R.N., Theory of Crystal Dislocations, Oxford, Clarendon Press, 1969.
- [25] Ostrov D., Solutions of Hamilton–Jacobi equations and scalar conservation laws with discontinuous space–time dependence, J. Differential Equations182 (2002) 51-77. Zbl1009.35015MR1912069
- [26] Whitham G.B., Linear and Nonlinear Waves, Wiley, New York, 1974. Zbl0373.76001MR483954
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.