Metrics of constant curvature on a Riemann surface with two corners on the boundary

Jürgen Jost; Guofang Wang; Chunqin Zhou

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 437-456
  • ISSN: 0294-1449

How to cite

top

Jost, Jürgen, Wang, Guofang, and Zhou, Chunqin. "Metrics of constant curvature on a Riemann surface with two corners on the boundary." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 437-456. <http://eudml.org/doc/78850>.

@article{Jost2009,
author = {Jost, Jürgen, Wang, Guofang, Zhou, Chunqin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Liouville equation; Gauss curvature; geodesic curvature; Riemannian surface; conical singularity; corner},
language = {eng},
number = {2},
pages = {437-456},
publisher = {Elsevier},
title = {Metrics of constant curvature on a Riemann surface with two corners on the boundary},
url = {http://eudml.org/doc/78850},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Jost, Jürgen
AU - Wang, Guofang
AU - Zhou, Chunqin
TI - Metrics of constant curvature on a Riemann surface with two corners on the boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 437
EP - 456
LA - eng
KW - Liouville equation; Gauss curvature; geodesic curvature; Riemannian surface; conical singularity; corner
UR - http://eudml.org/doc/78850
ER -

References

top
  1. [1] Brezis H., Merle F., Uniform estimates and the blow-up behaviour for the solutions of - Δ u = V x e u in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
  2. [2] Chanillo S., Kiessling M.K.-H., Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal.5 (1995) 924-947. Zbl0858.35035MR1361515
  3. [3] Chen W., Li C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal.1 (1991) 359-372. Zbl0739.58012MR1129348
  4. [4] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
  5. [5] Chen W., Li C., What kinds of singular surfaces can admit constant curvature?, Duke Math. J.78 (1995) 437-451. Zbl0854.53036MR1333510
  6. [6] Chou K.S., Wan T.Y.H., Asymptotic radial symmetry for solutions of Δ u + e u = 0 in a punctured disc, Pacific J. Math.163 (1994) 269-276. Zbl0794.35049MR1262297
  7. [7] Chang S., Yang P., Conformal deformation of metrics on S 2 , J. Differential Geom.27 (1988) 259-296. Zbl0649.53022MR925123
  8. [8] Eremenko A., Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc.132 (2004) 3349-3355. Zbl1053.53025MR2073312
  9. [9] Hang F., Wang X., A new approach to some nonlinear geometric equations in dimension two, Calc. Var. Partial Differential Equations26 (2006) 119-135. Zbl1105.35036MR2217485
  10. [10] Hulin D., Troyanov M., Prescribing curvature on open surfaces, Math. Ann.293 (1992) 277-315. Zbl0799.53047MR1166122
  11. [11] Jost J., Lin C.S., Wang G.F., Analytic Aspects of the Toda System: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math.59 (2006) 526-558. Zbl1207.35140MR2199785
  12. [12] Jost J., Wang G.F., Classification of solutions of a Toda system in R 2 , Int. Math. Res. Not. (6) (2002) 277-290. Zbl1001.35037MR1877003
  13. [13] Li Y.Y., Zhu M.J., Uniqueness theorems through the method of moving spheres, Duke Math. J.80 (1995) 383-417. Zbl0846.35050MR1369398
  14. [14] Luo F., Tian G., Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc.116 (1992) 1119-1129. Zbl0806.53012MR1137227
  15. [15] Mandelbaum R., Branched structures on Riemann surfaces, Trans. Amer Math. Soc.163 (1972) 261-275. Zbl0227.30021MR288253
  16. [16] McOwen R., Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc.103 (1988) 222-224. Zbl0657.30033MR938672
  17. [17] Prajapat J., Tarantello G., On a class of elliptic problems in R 2 : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 967-985. Zbl1009.35018MR1855007
  18. [18] Troyanov M., Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc.324 (1991) 793-821. Zbl0724.53023MR1005085
  19. [19] Troyanov M., Metrics of constant curvature on a sphere with two conical singularities, in: Lecture Notes in Math., vol. 1410, Springer-Verlag, 1989, pp. 296-308. Zbl0697.53037MR1034288
  20. [20] Umehara M., Yamada K., Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois J. Math.44 (2000) 72-94. Zbl0958.30029MR1731382
  21. [21] Wang G., Zhu X., Extremal hermitian metrics on Riemann surfaces with singularities, Duke Math. J.104 (2000) 181-209. Zbl0980.58009MR1773558
  22. [22] Zhang L., Classification of conformal metrics on R + 2 with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions, Calc. Var. Partial Differential Equations16 (2003) 405-430. Zbl1290.35112MR1971036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.