Metrics of constant curvature on a Riemann surface with two corners on the boundary
Jürgen Jost; Guofang Wang; Chunqin Zhou
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 437-456
- ISSN: 0294-1449
Access Full Article
topHow to cite
topJost, Jürgen, Wang, Guofang, and Zhou, Chunqin. "Metrics of constant curvature on a Riemann surface with two corners on the boundary." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 437-456. <http://eudml.org/doc/78850>.
@article{Jost2009,
author = {Jost, Jürgen, Wang, Guofang, Zhou, Chunqin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Liouville equation; Gauss curvature; geodesic curvature; Riemannian surface; conical singularity; corner},
language = {eng},
number = {2},
pages = {437-456},
publisher = {Elsevier},
title = {Metrics of constant curvature on a Riemann surface with two corners on the boundary},
url = {http://eudml.org/doc/78850},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Jost, Jürgen
AU - Wang, Guofang
AU - Zhou, Chunqin
TI - Metrics of constant curvature on a Riemann surface with two corners on the boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 437
EP - 456
LA - eng
KW - Liouville equation; Gauss curvature; geodesic curvature; Riemannian surface; conical singularity; corner
UR - http://eudml.org/doc/78850
ER -
References
top- [1] Brezis H., Merle F., Uniform estimates and the blow-up behaviour for the solutions of in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
- [2] Chanillo S., Kiessling M.K.-H., Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal.5 (1995) 924-947. Zbl0858.35035MR1361515
- [3] Chen W., Li C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal.1 (1991) 359-372. Zbl0739.58012MR1129348
- [4] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
- [5] Chen W., Li C., What kinds of singular surfaces can admit constant curvature?, Duke Math. J.78 (1995) 437-451. Zbl0854.53036MR1333510
- [6] Chou K.S., Wan T.Y.H., Asymptotic radial symmetry for solutions of in a punctured disc, Pacific J. Math.163 (1994) 269-276. Zbl0794.35049MR1262297
- [7] Chang S., Yang P., Conformal deformation of metrics on , J. Differential Geom.27 (1988) 259-296. Zbl0649.53022MR925123
- [8] Eremenko A., Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc.132 (2004) 3349-3355. Zbl1053.53025MR2073312
- [9] Hang F., Wang X., A new approach to some nonlinear geometric equations in dimension two, Calc. Var. Partial Differential Equations26 (2006) 119-135. Zbl1105.35036MR2217485
- [10] Hulin D., Troyanov M., Prescribing curvature on open surfaces, Math. Ann.293 (1992) 277-315. Zbl0799.53047MR1166122
- [11] Jost J., Lin C.S., Wang G.F., Analytic Aspects of the Toda System: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math.59 (2006) 526-558. Zbl1207.35140MR2199785
- [12] Jost J., Wang G.F., Classification of solutions of a Toda system in , Int. Math. Res. Not. (6) (2002) 277-290. Zbl1001.35037MR1877003
- [13] Li Y.Y., Zhu M.J., Uniqueness theorems through the method of moving spheres, Duke Math. J.80 (1995) 383-417. Zbl0846.35050MR1369398
- [14] Luo F., Tian G., Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc.116 (1992) 1119-1129. Zbl0806.53012MR1137227
- [15] Mandelbaum R., Branched structures on Riemann surfaces, Trans. Amer Math. Soc.163 (1972) 261-275. Zbl0227.30021MR288253
- [16] McOwen R., Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc.103 (1988) 222-224. Zbl0657.30033MR938672
- [17] Prajapat J., Tarantello G., On a class of elliptic problems in : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 967-985. Zbl1009.35018MR1855007
- [18] Troyanov M., Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc.324 (1991) 793-821. Zbl0724.53023MR1005085
- [19] Troyanov M., Metrics of constant curvature on a sphere with two conical singularities, in: Lecture Notes in Math., vol. 1410, Springer-Verlag, 1989, pp. 296-308. Zbl0697.53037MR1034288
- [20] Umehara M., Yamada K., Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois J. Math.44 (2000) 72-94. Zbl0958.30029MR1731382
- [21] Wang G., Zhu X., Extremal hermitian metrics on Riemann surfaces with singularities, Duke Math. J.104 (2000) 181-209. Zbl0980.58009MR1773558
- [22] Zhang L., Classification of conformal metrics on with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions, Calc. Var. Partial Differential Equations16 (2003) 405-430. Zbl1290.35112MR1971036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.