Killing graphs with prescribed mean curvature and riemannian submersions

M. Dajczer; J. H. de Lira

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 763-775
  • ISSN: 0294-1449

How to cite

top

Dajczer, M., and de Lira, J. H.. "Killing graphs with prescribed mean curvature and riemannian submersions." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 763-775. <http://eudml.org/doc/78866>.

@article{Dajczer2009,
author = {Dajczer, M., de Lira, J. H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Riemannian submersion; prescribed mean curvature; Killing graphs},
language = {eng},
number = {3},
pages = {763-775},
publisher = {Elsevier},
title = {Killing graphs with prescribed mean curvature and riemannian submersions},
url = {http://eudml.org/doc/78866},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Dajczer, M.
AU - de Lira, J. H.
TI - Killing graphs with prescribed mean curvature and riemannian submersions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 763
EP - 775
LA - eng
KW - Riemannian submersion; prescribed mean curvature; Killing graphs
UR - http://eudml.org/doc/78866
ER -

References

top
  1. [1] Abresch U., Rosenberg H., Generalized Hopf differentials, Mat. Contemp.28 (2005) 1-28. Zbl1118.53036MR2195187
  2. [2] Alias L., Dajczer M., Ripoll J., A Bernstein-type theorem for Riemannian manifolds with a Killing field, Ann. Glob. Anal. Geom.31 (2007) 363-373. Zbl1125.53005MR2325221
  3. [3] Alias L., Dajczer M., Rosenberg H., The Dirichlet problem for CMC surfaces in Heisenberg space, Calc. Var. Partial Differ. Equations30 (2007) 513-522. Zbl1210.53010MR2332426
  4. [4] M. Dajczer, P. Hinojosa, J.H. de Lira, Killing graphs with prescribed mean curvature, Calc. Var. Partial Differ. Equations, in press. Zbl1152.53046
  5. [5] Dajczer M., Ripoll J., An extension of a theorem of Serrin to graphs in warped products, J. Geom. Anal.15 (2005) 193-205. Zbl1110.58021MR2152479
  6. [6] Daniel B., Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv.82 (2007) 87-131. Zbl1123.53029MR2296059
  7. [7] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, Preprint. Zbl1209.53048
  8. [8] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001. Zbl0361.35003MR1814364
  9. [9] Korevaar N., An easy proof of the interior gradient bound for solutions of the prescribed mean curvature equation, in: Proc. Symp. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986. Zbl0599.35046MR843597
  10. [10] Li Y.Y., Nirenberg L., Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl.123 (2005) 257-264. MR2305073
  11. [11] Morrey C., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
  12. [12] O'Neill B., The fundamental equations of a submersion, Michigan Math. J.13 (1966) 459-469. Zbl0145.18602MR200865
  13. [13] Spruck J., Interior gradient estimates and existence theorem for constant mean curvature graphs, Pure Appl. Math. Q.3 (2007) 785-800. Zbl1145.53048MR2351645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.