Killing graphs with prescribed mean curvature and riemannian submersions
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 763-775
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDajczer, M., and de Lira, J. H.. "Killing graphs with prescribed mean curvature and riemannian submersions." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 763-775. <http://eudml.org/doc/78866>.
@article{Dajczer2009,
author = {Dajczer, M., de Lira, J. H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Riemannian submersion; prescribed mean curvature; Killing graphs},
language = {eng},
number = {3},
pages = {763-775},
publisher = {Elsevier},
title = {Killing graphs with prescribed mean curvature and riemannian submersions},
url = {http://eudml.org/doc/78866},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Dajczer, M.
AU - de Lira, J. H.
TI - Killing graphs with prescribed mean curvature and riemannian submersions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 763
EP - 775
LA - eng
KW - Riemannian submersion; prescribed mean curvature; Killing graphs
UR - http://eudml.org/doc/78866
ER -
References
top- [1] Abresch U., Rosenberg H., Generalized Hopf differentials, Mat. Contemp.28 (2005) 1-28. Zbl1118.53036MR2195187
- [2] Alias L., Dajczer M., Ripoll J., A Bernstein-type theorem for Riemannian manifolds with a Killing field, Ann. Glob. Anal. Geom.31 (2007) 363-373. Zbl1125.53005MR2325221
- [3] Alias L., Dajczer M., Rosenberg H., The Dirichlet problem for CMC surfaces in Heisenberg space, Calc. Var. Partial Differ. Equations30 (2007) 513-522. Zbl1210.53010MR2332426
- [4] M. Dajczer, P. Hinojosa, J.H. de Lira, Killing graphs with prescribed mean curvature, Calc. Var. Partial Differ. Equations, in press. Zbl1152.53046
- [5] Dajczer M., Ripoll J., An extension of a theorem of Serrin to graphs in warped products, J. Geom. Anal.15 (2005) 193-205. Zbl1110.58021MR2152479
- [6] Daniel B., Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv.82 (2007) 87-131. Zbl1123.53029MR2296059
- [7] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, Preprint. Zbl1209.53048
- [8] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001. Zbl0361.35003MR1814364
- [9] Korevaar N., An easy proof of the interior gradient bound for solutions of the prescribed mean curvature equation, in: Proc. Symp. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986. Zbl0599.35046MR843597
- [10] Li Y.Y., Nirenberg L., Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl.123 (2005) 257-264. MR2305073
- [11] Morrey C., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
- [12] O'Neill B., The fundamental equations of a submersion, Michigan Math. J.13 (1966) 459-469. Zbl0145.18602MR200865
- [13] Spruck J., Interior gradient estimates and existence theorem for constant mean curvature graphs, Pure Appl. Math. Q.3 (2007) 785-800. Zbl1145.53048MR2351645
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.