Asymmetric potentials and motor effect : a homogenization approach

Benoît Perthame; Panagiotis E. Souganidis

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2055-2071
  • ISSN: 0294-1449

How to cite

top

Perthame, Benoît, and Souganidis, Panagiotis E.. "Asymmetric potentials and motor effect : a homogenization approach." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2055-2071. <http://eudml.org/doc/78924>.

@article{Perthame2009,
author = {Perthame, Benoît, Souganidis, Panagiotis E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equations; molecular motors; effective Hamiltonian; concentration phenomena},
language = {eng},
number = {6},
pages = {2055-2071},
publisher = {Elsevier},
title = {Asymmetric potentials and motor effect : a homogenization approach},
url = {http://eudml.org/doc/78924},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Perthame, Benoît
AU - Souganidis, Panagiotis E.
TI - Asymmetric potentials and motor effect : a homogenization approach
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2055
EP - 2071
LA - eng
KW - Hamilton-Jacobi equations; molecular motors; effective Hamiltonian; concentration phenomena
UR - http://eudml.org/doc/78924
ER -

References

top
  1. [1] Allaire G., Capdeboscq Y., Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg.187 (1–2) (2000) 91-117. Zbl1126.82346MR1765549
  2. [2] Allaire G., Orive R., Homogenization of periodic non self-adjoint problems with large drift and potential, COCV13 (2007) 735-749. Zbl1130.35307MR2351401
  3. [3] Allaire G., Raphael A.-L., Homogenization of a convection–diffusion model with reaction in a porous medium, C. R. Acad. Sci. Paris, Ser. I334 (2007) 523-528. Zbl1114.35007MR2324490
  4. [4] Astumian R.D., Hänggi P., Brownian motors, Phys. Today55 (11) (2002) 33-39. 
  5. [5] Barles G., Evans L.C., Souganidis P.E., Wavefront propagation for reaction diffusion systems of PDE, Duke Math. J.61 (1990) 835-858. Zbl0749.35015MR1084462
  6. [6] Barles G., Perthame B., Concentrations and constrained Hamilton–Jacobi equations arising in adaptive dynamics, in: Danielli D. (Ed.), Recent Developments in Nonlinear Partial Differential Equations, Contemp. Math., vol. 439, Amer. Math. Soc., 2007, pp. 57-68. Zbl1137.49027MR2359020
  7. [7] A. Blanchet, J. Dolbeault, M. Kowalczyk, Stochastic Stokes' drift, homogenized functional inequalities, and large time behaviour of Brownian ratchets, preprint, 2008. Zbl1196.26023MR2505853
  8. [8] Budhiraja A., Fricks J., Molecular motors, brownian ratchets, and reflected diffusions, Discrete Contin. Dynam. Systems B6 (4) (2006) 711-734. Zbl1132.92005MR2223904
  9. [9] Capdeboscq Y., Homogenization of a neutronic critical diffusion problem with drift, Proc. Roy. Soc. Edinburgh Sect. A132 (2002) 567-594. Zbl1066.82530MR1912416
  10. [10] Chipot M., Hastings S., Kinderlehrer D., Transport in a molecular motor system, M2AN Math. Model. Numer. Anal.38 (6) (2004) 1011-1034. Zbl1077.35060MR2108942
  11. [11] Chipot M., Kinderlehrer D., Kowalczyk M., A variational principle for molecular motors, dedicated to Piero Villaggio on the occasion of his 70th birthday, Meccanica38 (5) (2003) 505-518. Zbl1032.92005MR2006911
  12. [12] Collet P., Martinez S., Asymptotic velocity of one dimensional diffusions with periodic drift, J. Math. Biol.56 (2008) 765-792. Zbl1145.60324MR2385683
  13. [13] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
  14. [14] Diekmann O., Jabin P.-E., Mischler S., Perthame B., The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach, Th. Pop. Biol.67 (4) (2005) 257-271. Zbl1072.92035
  15. [15] Doering C., Ermentrout B., Oster G., Rotary DNA motors, Biophys. J.69 (6) (1995) 2256-2267. 
  16. [16] Dolbeault J., Kinderlehrer D., Kowalczyk M., Remarks about the flashing rachet, in: Partial Differential Equations and Inverse Problems, Contemp. Math., vol. 362, Amer. Math. Soc., Providence, RI, 2004, pp. 167-175. Zbl1064.35065MR2091497
  17. [17] Donato P., Piatniski A., Averaging of nonstationary parabolic operators with large lower order terms, in: Multiscale Problems and Asymptotic Analysis, Gakuto Internat. Ser. Math. Sci. Appl., vol. 24, Gakkotosho, Tokyo, 2006, pp. 153-165. MR2233176
  18. [18] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A111 (1989) 359-375. Zbl0679.35001MR1007533
  19. [19] Evans L.C., Souganidis P.E., A PDE approach to geometric optics for certain reaction–diffusion equations, Indiana Univ. Math. J.38 (1989) 141-172. Zbl0692.35014MR982575
  20. [20] Jülicher F., Ajdari A., Prost J., Modeling molecular motors, Rev. Modern Phys.69 (4) (1997) 1269-1281. 
  21. [21] S. Hastings, D. Kinderlehrer, J.B. McLeod, Diffusion mediated transport with a look at motor proteins, preprint, 2007. Zbl05375303MR2410740
  22. [22] Howard J., Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc., 2001. 
  23. [23] Huxley A.F., Muscle structure and theories of contraction, Prog. Biophys. Chem.7 (1957) 255-318. 
  24. [24] Kinderlehrer D., Kowalczyk M., Diffusion-mediated transport and the flashing ratchet, Arch. Ration. Mech. Anal.161 (2) (2002) 149-179. Zbl1065.76183MR1870955
  25. [25] Perthame B., The general relative entropy principle – applications in Perron–Frobenius and Floquet theories and a parabolic system for biomotors, Rend. Accad. Nazi. Sci. XL Mem. Mat. Appl.XXIX (1) (2005) 307-326. MR2305078
  26. [26] Perthame B., Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, 2007. Zbl1185.92006MR2270822
  27. [27] B. Perthame, P.E. Souganidis, Asymmetric potentials and motor effect: a large deviation approach, Arch. Rat. Mech. Anal., in press. Zbl1171.82012MR2506073
  28. [28] Peskin C.S., Ermentrout B., Oster G., The correlation ratchet: a novel mechanism for generating directed motion by ATP hydrolysis, in: Mow V.C., (Eds.), Cell Mechanics and Cellular Engineering, Springer, New York, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.