Random data Cauchy problem for supercritical Schrödinger equations

Laurent Thomann

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2385-2402
  • ISSN: 0294-1449

How to cite

top

Thomann, Laurent. "Random data Cauchy problem for supercritical Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2385-2402. <http://eudml.org/doc/78939>.

@article{Thomann2009,
author = {Thomann, Laurent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equation; potential; random data; supercritical equation},
language = {eng},
number = {6},
pages = {2385-2402},
publisher = {Elsevier},
title = {Random data Cauchy problem for supercritical Schrödinger equations},
url = {http://eudml.org/doc/78939},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Thomann, Laurent
TI - Random data Cauchy problem for supercritical Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2385
EP - 2402
LA - eng
KW - nonlinear Schrödinger equation; potential; random data; supercritical equation
UR - http://eudml.org/doc/78939
ER -

References

top
  1. [1] Bourgain J., Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys.166 (1994) 1-26. Zbl0822.35126MR1309539
  2. [2] Bourgain J., Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys.176 (1996) 421-445. Zbl0852.35131MR1374420
  3. [3] N. Burq, L. Thomann, N. Tzvetkov, Gibbs measures for the nonlinear harmonic oscillator, preprint. Zbl1320.35217
  4. [4] Burq N., Tzvetkov N., Invariant measure for the three-dimensional nonlinear wave equation, Int. Math. Res. Not. IMRN22 (2007), Art. ID rnm108, 26 pp. Zbl1134.35076
  5. [5] Burq N., Tzvetkov N., Random data Cauchy theory for supercritical wave equations I: Local existence theory, Invent. Math.173 (3) (2008) 449-475. Zbl1156.35062MR2425133
  6. [6] Burq N., Tzvetkov N., Random data Cauchy theory for supercritical wave equations II: A global existence result, Invent. Math.173 (3) (2008) 477-496. Zbl1187.35233MR2425134
  7. [7] Carles R., Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal.183 (3) (2007) 525-553. Zbl1134.35098MR2278414
  8. [8] Carles R., Rotating points for the conformal NLS scattering operator, Dyn. Partial Differ. Equ.6 (1) (2009) 35-51. Zbl1191.35270MR2517827
  9. [9] Carles R., Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential, in: Contemp. Math., vol. 7(4), 2005, pp. 483-508. Zbl1095.35044MR2166662
  10. [10] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1) (1979) 1-71. Zbl0396.35029MR533219
  11. [11] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
  12. [12] Koch H., Tataru D., L p eigenfunction bounds for the Hermite operator, Duke Math. J.128 (2) (2005) 369-392. Zbl1075.35020MR2140267
  13. [13] Taylor M.E., Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Math. Surveys Monogr., vol. 81, American Mathematical Society, Providence, RI, 2000. Zbl0963.35211MR1766415
  14. [14] Thomann L., Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations245 (1) (2008) 249-280. Zbl1157.35107MR2422717
  15. [15] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation, Probab. Theory Related Fields, in press. Zbl1188.35183MR2574736
  16. [16] Tzvetkov N., Invariant measures for the defocusing NLS, Ann. Inst. Fourier58 (2008) 2543-2604. Zbl1171.35116MR2498359
  17. [17] Tzvetkov N., Invariant measures for the Nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ.3 (2006) 111-160. Zbl1142.35090MR2227040
  18. [18] Yajima K., Zhang G., Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differential Equations1 (2004) 81-110. Zbl1060.35121MR2060533
  19. [19] Yajima K., Zhang G., Smoothing property for Schrödinger equations with potential superquadratic at infinity, Comm. Math. Phys.221 (3) (2001) 573-590. Zbl1102.35320MR1852054
  20. [20] Zhidkov P., KdV and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer, 2001. Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.