Random data Cauchy problem for supercritical Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2385-2402
- ISSN: 0294-1449
Access Full Article
topHow to cite
topThomann, Laurent. "Random data Cauchy problem for supercritical Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2385-2402. <http://eudml.org/doc/78939>.
@article{Thomann2009,
author = {Thomann, Laurent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equation; potential; random data; supercritical equation},
language = {eng},
number = {6},
pages = {2385-2402},
publisher = {Elsevier},
title = {Random data Cauchy problem for supercritical Schrödinger equations},
url = {http://eudml.org/doc/78939},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Thomann, Laurent
TI - Random data Cauchy problem for supercritical Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2385
EP - 2402
LA - eng
KW - nonlinear Schrödinger equation; potential; random data; supercritical equation
UR - http://eudml.org/doc/78939
ER -
References
top- [1] Bourgain J., Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys.166 (1994) 1-26. Zbl0822.35126MR1309539
- [2] Bourgain J., Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys.176 (1996) 421-445. Zbl0852.35131MR1374420
- [3] N. Burq, L. Thomann, N. Tzvetkov, Gibbs measures for the nonlinear harmonic oscillator, preprint. Zbl1320.35217
- [4] Burq N., Tzvetkov N., Invariant measure for the three-dimensional nonlinear wave equation, Int. Math. Res. Not. IMRN22 (2007), Art. ID rnm108, 26 pp. Zbl1134.35076
- [5] Burq N., Tzvetkov N., Random data Cauchy theory for supercritical wave equations I: Local existence theory, Invent. Math.173 (3) (2008) 449-475. Zbl1156.35062MR2425133
- [6] Burq N., Tzvetkov N., Random data Cauchy theory for supercritical wave equations II: A global existence result, Invent. Math.173 (3) (2008) 477-496. Zbl1187.35233MR2425134
- [7] Carles R., Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal.183 (3) (2007) 525-553. Zbl1134.35098MR2278414
- [8] Carles R., Rotating points for the conformal NLS scattering operator, Dyn. Partial Differ. Equ.6 (1) (2009) 35-51. Zbl1191.35270MR2517827
- [9] Carles R., Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential, in: Contemp. Math., vol. 7(4), 2005, pp. 483-508. Zbl1095.35044MR2166662
- [10] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1) (1979) 1-71. Zbl0396.35029MR533219
- [11] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
- [12] Koch H., Tataru D., eigenfunction bounds for the Hermite operator, Duke Math. J.128 (2) (2005) 369-392. Zbl1075.35020MR2140267
- [13] Taylor M.E., Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Math. Surveys Monogr., vol. 81, American Mathematical Society, Providence, RI, 2000. Zbl0963.35211MR1766415
- [14] Thomann L., Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations245 (1) (2008) 249-280. Zbl1157.35107MR2422717
- [15] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation, Probab. Theory Related Fields, in press. Zbl1188.35183MR2574736
- [16] Tzvetkov N., Invariant measures for the defocusing NLS, Ann. Inst. Fourier58 (2008) 2543-2604. Zbl1171.35116MR2498359
- [17] Tzvetkov N., Invariant measures for the Nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ.3 (2006) 111-160. Zbl1142.35090MR2227040
- [18] Yajima K., Zhang G., Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differential Equations1 (2004) 81-110. Zbl1060.35121MR2060533
- [19] Yajima K., Zhang G., Smoothing property for Schrödinger equations with potential superquadratic at infinity, Comm. Math. Phys.221 (3) (2001) 573-590. Zbl1102.35320MR1852054
- [20] Zhidkov P., KdV and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer, 2001. Zbl0987.35001MR1831831
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.