The first de Rham cohomology group and Dieudonné modules

Tadao Oda

Annales scientifiques de l'École Normale Supérieure (1969)

  • Volume: 2, Issue: 1, page 63-135
  • ISSN: 0012-9593

How to cite

top

Oda, Tadao. "The first de Rham cohomology group and Dieudonné modules." Annales scientifiques de l'École Normale Supérieure 2.1 (1969): 63-135. <http://eudml.org/doc/81844>.

@article{Oda1969,
author = {Oda, Tadao},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic geometry},
language = {eng},
number = {1},
pages = {63-135},
publisher = {Elsevier},
title = {The first de Rham cohomology group and Dieudonné modules},
url = {http://eudml.org/doc/81844},
volume = {2},
year = {1969},
}

TY - JOUR
AU - Oda, Tadao
TI - The first de Rham cohomology group and Dieudonné modules
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1969
PB - Elsevier
VL - 2
IS - 1
SP - 63
EP - 135
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/81844
ER -

References

top
  1. [1] M. ARTIN, Grothendieck topologies, Seminar notes at Harvard University, 1962. Zbl0208.48701
  2. [2] I. BARSOTTI, Moduli canonici e gruppi analitici commutativi (Ann. Scuola Norm. Sup. Pisa, vol. 13, 1959, p. 303-372). Zbl0092.27203MR22 #4718
  3. [3] I. BARSOTTI, Metodi analitici per varieta abeliane in caratteristica positiva (Chap. I and II, Ibid., vol. 18, 1964, p. 1-25 ; Chap. III, IV and V, Ibid., vol. 19, 1965, p. 277-330 and 481-512 ; Chap. VI and VII, Ibid., vol. 20, 1966, p. 101-137 and 331-365). Zbl0168.18601
  4. [4] I. BARSOTTI, Analytical methods for abelian varieties in positive characteristic, Coll. Théorie Groupes algébriques, C. B. R. M., Bruxelles, 1962, p. 77-85. Zbl0163.15301MR27 #5761
  5. [5] H. CARTAN and S. EILENBERG, Homological algebra, Princeton Math. Ser., 19. Zbl0075.24305
  6. [6] P. CARTIER, Une nouvelle opération sur les formes différentielles (C. R. Acad. Sc., t. 244, 1957, p. 426-428). Zbl0077.04502MR18,870b
  7. [7] P. CARTIER, Groupes algébriques et groupes formels, Coll. Théorie Groupes algébriques, C. B. R. M., Bruxelles, 1962, p. 87-111. Zbl0173.49001MR26 #6172
  8. [8] P. CARTIER, Isogenies and duality of abelian varieties (Ann. Math., vol. 71, 1960, p. 315-351). Zbl0100.16901MR22 #6814
  9. [9] C. CHEVALLEY, Sur la théorie de la variété de Picard (Amer. J. Math., vol. 82, 1960, p. 435-490). Zbl0127.37701MR22 #9494
  10. [10] M. DEURING, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper (Abh. Math. Sem. Univ. Hamburg., vol. 47, 1942, p. 643-654). Zbl0026.20001MR7,362cJFM68.0061.01
  11. [11] J. DIEUDONNÉ, On the Artin-Hasse exponential series (Proc. Amer. Math. Soc., vol. 8, 1957, p. 210-214). Zbl0079.05902MR19,290f
  12. [12] P. GABRIEL, S. G. A. D., 1963-1964, exposés 7 A et 7 B. 
  13. [13] P. GABRIEL, Sur les catégories abéliennes localement noethériennes et leurs applications aux algèbres étudiées par Dieudonné, Séminaire Serre, Paris, 1960. 
  14. [14] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Paris, Hermann, 1958. Zbl0080.16201MR21 #1583
  15. [15] A. GROTHENDIECK, On the de Rham cohomology of algebraic varieties, Publ. Math. I. H. E. S., No. 29, 1966. Zbl0145.17602MR33 #7343
  16. [16] A. GROTHENDIECK, (FGA) Fondements de la géométrie algébrique, Séminaire Bourbaki, 1957-1962. Zbl0239.14002
  17. [17] A. GROTHENDIECK, (SGA) Séminaire de géométrie algébrique, I. H. E. S., 1960-1961. 
  18. [18] A. GROTHENDIECK, Local cohomology (note by R. HARTSHORNE), Seminar notes at Harvard University, 1961 ; Springer-Verlag lectures notes, No. 41, 1967. Zbl0185.49202
  19. [19] A. GROTHENDIECK et J. DIEUDONNÉ, (EGA) Éléments de géométrie algébrique, Publ. Math. I. H. E. S. Zbl0203.23301
  20. [20] J. I. IGUSA, A fundamental inequality in the theory of Picard varieties (Proc. Nat. Acad. U. S. A., vol. 41, 1955, p. 317-320). Zbl0067.39201MR17,87c
  21. [21] J. I. IGUSA, On some problems in abstract algebraic geometry (Proc. Nat. Acad. U. S. A., vol. 41, 1955, p. 961-967). Zbl0067.39102MR17,534a
  22. [22] S. LANG, Abelian varieties, Interscience Tracts 7, New York, 1959. Zbl0098.13201MR21 #4959
  23. [23] S. LANG et J.-P. SERRE, Sur les revêtements non ramifiés des variétés algébriques (Amer. J. Math., vol. 79, 1957, p. 319-330). Zbl0089.26401MR19,320c
  24. [24] YU. I. MANIN, The theory of commutative formal groups over fields of finite characteristic (Usp. Math. Nauk, vol. 18, 1963, p. 3-90 ; English translation : Russian Math. Surv., vol. 18, 1963, p. 1-83). Zbl0128.15603
  25. [25] H. MATSUMURA and M. MIYANISHI, On some dualities concerning abelian varieties (Nagoya Math. J., vol. 27, 1966, p. 447-462). Zbl0148.41403MR34 #5835
  26. [26] D. MUMFORD, On the equations defining abelian varieties I (Invent. Math., vol. 1, 1966, p. 287-354). Zbl0219.14024MR34 #4269
  27. [27] D. MUMFORD, Geometric invariant theory, Ergebnisse Math., Springer Verlag, 1965. Zbl0147.39304MR35 #5451
  28. [28] D. MUMFORD, Pathologies of modular algebraic surfaces (Amer. J. Math., vol. 83, 1961, p. 339-342). Zbl0138.42002MR23 #A1642
  29. [29] D. MUMFORD, Lecture on curves on an algebraic surface (Amer. Math. Study, vol. 59, 1966). Zbl0187.42701MR35 #187
  30. [30] J. F. MURRE, On contravariant functors from the category of preschemes over a field into the category of abelian groups, Publ. Math. I. H. E. S., 23, 1964. Zbl0142.18402
  31. [31] F. OORT, Commutative group schemes, Lecture note in Math., 15, Springer, 1966. Zbl0216.05603MR35 #4229
  32. [32] J.-P. SERRE, Groupes algébriques et corps de classes, Hermann, Paris, 1959. Zbl0097.35604MR21 #1973
  33. [33] J.-P. SERRE, Sur la topologie des variétés algébriques en caractéristique p, Symposium of Topology, Mexico, 1956. Zbl0098.13103
  34. [34] J.-P. SERRE, Quelques propriétés des variétés abéliennes en caractéristique p (Amer. J. Math., vol. 80, 1958, p. 715-739). Zbl0099.16201MR20 #4562
  35. [35] J.-P. SERRE, Groupes p-divisibles (d'après Tate), Séminaire Bourbaki, exposé 318, 1966-1967. Zbl0197.17201
  36. [36] C. S. SESHADRI, L'opération de Cartier. Applications, Séminaire C. Chevalley, Variétés de Picard, exposé 6, 1958-1959. Zbl0121.38001
  37. [37] P. K. SHARMA, Structure theory of commutative affine groups, Séminaire Heidelberg-Strasbourg, Groupes algébriques linéaires, exposé 11, 1965-1966. 
  38. [38] J. TATE, p-divisible groups, Proceedings of a conference on local fields, Nuffic Summer School at Driebergen, Springer-Verlag, 1967, p. 159-183. Zbl0157.27601MR38 #155
  39. [39] J. TATE, Endomorphisms of abelian varieties over finite fields (Invent. Math., vol. 2, 1966, p. 134-144). Zbl0147.20303MR34 #5829
  40. [40] A. WEIL, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. Zbl0037.16202MR10,621d
  41. [41] P. CARTIER, Groupes formels associés aux anneaux de Witt généralisés (C. R. Acad. Sc., t. 265, série A, 1967, p. 49-52). Zbl0168.27501MR36 #1448
  42. [42] J. S. MILNE, The conjecture of Birch and Swinnerton-Dyer for constant abelian varieties over function fields, Doctoral Dissertation, Harvard University, 1967. 
  43. [43] M. MIYANISHI, On the pro-representability of a functor on the category of finite group schemes (J. Math. Kyoto Univ., vol. 6, 1966, p. 31-48). Zbl0168.41901MR35 #6699

Citations in EuDML Documents

top
  1. Hans-Georg Rück, Abelian surfaces and jacobian varieties over finite fields
  2. V. Cristante, Theta functions and Barsotti-Tate groups
  3. William E. Lang, Two theorems on de Rham cohomology
  4. William E. Lang, Examples of liftings of surfaces and a problem in de Rham cohomology
  5. Niels O. Nygaard, Closedness of regular 1 -forms on algebraic surfaces
  6. Nicholas M. Katz, Nilpotent connections and the monodromy theorem : applications of a result of Turrittin
  7. William C. Waterhouse, Abelian varieties over finite fields
  8. William E. Lang, Quasi-elliptic surfaces in characteristic three
  9. Neal Koblitz, p -adic variation of the zeta-function over families of varieties defined over finite fields
  10. Everett W. Howe, Enric Nart, Christophe Ritzenthaler, Jacobians in isogeny classes of abelian surfaces over finite fields

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.