On the Enright-Varadarajan modules : a construction of the discrete series

Nolan R. Wallach

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 1, page 81-101
  • ISSN: 0012-9593

How to cite

top

Wallach, Nolan R.. "On the Enright-Varadarajan modules : a construction of the discrete series." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 81-101. <http://eudml.org/doc/81977>.

@article{Wallach1976,
author = {Wallach, Nolan R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {81-101},
publisher = {Elsevier},
title = {On the Enright-Varadarajan modules : a construction of the discrete series},
url = {http://eudml.org/doc/81977},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Wallach, Nolan R.
TI - On the Enright-Varadarajan modules : a construction of the discrete series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 81
EP - 101
LA - eng
UR - http://eudml.org/doc/81977
ER -

References

top
  1. [1] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, The Structure of Representations Generated by Highest Weight Vectors (Funct. Anal. Appl., vol. 5, 1971, pp. 1-9). Zbl0246.17008MR45 #298
  2. [2] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  3. [3] T. ENRIGHT, On the Discrete Series Representations of SU (n, 1) and SO (2 k, 1) (to appear). 
  4. [4] T. ENRIGHT and V. VARADARAJAN, On an Infinitessimal Characterizatic of the Discrete Series (to appear in Annals of Mathematics). Zbl0304.22011
  5. [5] HARISH-CHANDRA, Representations of Semi-Simple Lie Groups, II (Trans. Amer. Math. Soc., vol. 75, 1954, pp. 26-65). Zbl0055.34002MR15,398a
  6. [6] HARISH-CHANDRA, Discrete Series for Semi-Simple Lie Groups, II (Acta Math., vol. 16, 1966, pp. 1-111). Zbl0199.20102MR36 #2745
  7. [7] HARISH-CHANDRA, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, pp. 74-128). Zbl0199.46403MR33 #2766
  8. [8] T. HIRAI, Invariant Eigen-Distributions of Laplace Operators on Real Simple Lie Groups, I. Case of SU (p, q) (Japan J. Math., vol. 40, 1970, pp. 1-68). Zbl0225.22025MR53 #13475
  9. [9] R. HOTTA and R. PARTHASARTHY, Multiplicity Formulae for Discrete Series (Inventiones Math., vol. 26, 1974, pp. 133-178). Zbl0298.22013MR50 #539
  10. [10] J. LEPOWSKY, Algebraic Results on Representations of Semi-Simple Lie Groups (Trans. Amer. Math. Soc., vol. 176, 1973, pp. 1-44). Zbl0264.22012MR49 #10819
  11. [11] H. ROSSI and M. VERGNE, The Analytic Continuation of the Holomorphic Discrete Series (to appear). Zbl0356.32020
  12. [12] W. SCHMID, On the Realization of the Discrete Series of a Semi-Simple Lie Group (Rice University Studies, vol. 56, 1970, pp. 99-108). Zbl0234.22017MR43 #3401
  13. [13] W. SCHMID, On a Conjecture of Langlands (Ann. of Math., vol. 93, 1971, pp. 1-42). Zbl0291.43013MR44 #4149
  14. [14] W. SCHMID, Some Properties of Square Integrable Representations of Semi-Simple Lie Groups (to appear). 
  15. [15] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, vol. II, Springer-Verlag, Berlin, 1972. Zbl0265.22021
  16. [16] R. HOTTA, Elliptic Complexes on some Homogeneous Spaces (Osaka J. Math., vol. 1970. pp. 117-160). Zbl0197.47703MR42 #428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.