On the Enright-Varadarajan modules : a construction of the discrete series
Annales scientifiques de l'École Normale Supérieure (1976)
- Volume: 9, Issue: 1, page 81-101
- ISSN: 0012-9593
Access Full Article
topHow to cite
topWallach, Nolan R.. "On the Enright-Varadarajan modules : a construction of the discrete series." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 81-101. <http://eudml.org/doc/81977>.
@article{Wallach1976,
author = {Wallach, Nolan R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {81-101},
publisher = {Elsevier},
title = {On the Enright-Varadarajan modules : a construction of the discrete series},
url = {http://eudml.org/doc/81977},
volume = {9},
year = {1976},
}
TY - JOUR
AU - Wallach, Nolan R.
TI - On the Enright-Varadarajan modules : a construction of the discrete series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 81
EP - 101
LA - eng
UR - http://eudml.org/doc/81977
ER -
References
top- [1] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, The Structure of Representations Generated by Highest Weight Vectors (Funct. Anal. Appl., vol. 5, 1971, pp. 1-9). Zbl0246.17008MR45 #298
- [2] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
- [3] T. ENRIGHT, On the Discrete Series Representations of SU (n, 1) and SO (2 k, 1) (to appear).
- [4] T. ENRIGHT and V. VARADARAJAN, On an Infinitessimal Characterizatic of the Discrete Series (to appear in Annals of Mathematics). Zbl0304.22011
- [5] HARISH-CHANDRA, Representations of Semi-Simple Lie Groups, II (Trans. Amer. Math. Soc., vol. 75, 1954, pp. 26-65). Zbl0055.34002MR15,398a
- [6] HARISH-CHANDRA, Discrete Series for Semi-Simple Lie Groups, II (Acta Math., vol. 16, 1966, pp. 1-111). Zbl0199.20102MR36 #2745
- [7] HARISH-CHANDRA, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, pp. 74-128). Zbl0199.46403MR33 #2766
- [8] T. HIRAI, Invariant Eigen-Distributions of Laplace Operators on Real Simple Lie Groups, I. Case of SU (p, q) (Japan J. Math., vol. 40, 1970, pp. 1-68). Zbl0225.22025MR53 #13475
- [9] R. HOTTA and R. PARTHASARTHY, Multiplicity Formulae for Discrete Series (Inventiones Math., vol. 26, 1974, pp. 133-178). Zbl0298.22013MR50 #539
- [10] J. LEPOWSKY, Algebraic Results on Representations of Semi-Simple Lie Groups (Trans. Amer. Math. Soc., vol. 176, 1973, pp. 1-44). Zbl0264.22012MR49 #10819
- [11] H. ROSSI and M. VERGNE, The Analytic Continuation of the Holomorphic Discrete Series (to appear). Zbl0356.32020
- [12] W. SCHMID, On the Realization of the Discrete Series of a Semi-Simple Lie Group (Rice University Studies, vol. 56, 1970, pp. 99-108). Zbl0234.22017MR43 #3401
- [13] W. SCHMID, On a Conjecture of Langlands (Ann. of Math., vol. 93, 1971, pp. 1-42). Zbl0291.43013MR44 #4149
- [14] W. SCHMID, Some Properties of Square Integrable Representations of Semi-Simple Lie Groups (to appear).
- [15] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, vol. II, Springer-Verlag, Berlin, 1972. Zbl0265.22021
- [16] R. HOTTA, Elliptic Complexes on some Homogeneous Spaces (Osaka J. Math., vol. 1970. pp. 117-160). Zbl0197.47703MR42 #428
Citations in EuDML Documents
top- Nicole Conze-Berline, Michel Duflo, Sur les représentations induites des groupes semi-simples complexes
- J. N. Bernstein, S. I. Gelfand, Tensor products of finite and infinite dimensional representations of semisimple Lie algebras
- Michel Duflo, Représentations de carré intégrable des groupes semi-simples réels
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.