A Liouville-type theorem for elliptic systems

D. G. De Figueiredo; P. L. Felmer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 3, page 387-397
  • ISSN: 0391-173X

How to cite

top

De Figueiredo, D. G., and Felmer, P. L.. "A Liouville-type theorem for elliptic systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.3 (1994): 387-397. <http://eudml.org/doc/84184>.

@article{DeFigueiredo1994,
author = {De Figueiredo, D. G., Felmer, P. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {superlinear elliptic systems; Liouville-type theorem},
language = {eng},
number = {3},
pages = {387-397},
publisher = {Scuola normale superiore},
title = {A Liouville-type theorem for elliptic systems},
url = {http://eudml.org/doc/84184},
volume = {21},
year = {1994},
}

TY - JOUR
AU - De Figueiredo, D. G.
AU - Felmer, P. L.
TI - A Liouville-type theorem for elliptic systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 3
SP - 387
EP - 397
LA - eng
KW - superlinear elliptic systems; Liouville-type theorem
UR - http://eudml.org/doc/84184
ER -

References

top
  1. [BN] H. Berestycki - L. Nirenberg, On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat.22 (1991), 1-22. Zbl0784.35025MR1159383
  2. [CFM] Ph. Clément - D.G. De Figueiredo - E. Mitidieri, Positive solutions of semilinear elliptic systems. Comm. Partial Differential Equations17 (1992), 923-940. Zbl0818.35027MR1177298
  3. [CGS] L. Caffarelli - B. Gidas - J. Spruck, Asymptotic Symmetry and local behavior of Semilinear Elliptic Equations with Critical Sobolev Growth. Comm. Pure App. Math., XLII (1989), 271-297. Zbl0702.35085MR982351
  4. [CL] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J.63 (1991), 615-622. Zbl0768.35025MR1121147
  5. [FF] D.G. De Figueiredo - P.L. Felmer, On Superquadratic Elliptic Systems. To appear in Trans. Amer. Math. Soc. Zbl0799.35063MR1214781
  6. [FM] D.G. De Figueiredo - E. Mitidieri, Maximum Principles for Linear Elliptic Systems. Rend. Ist. Mat. Univ. TriesteXXII (1990), 36-66. Zbl0793.35011MR1210477
  7. [HV] J. Hulshof - R. Van Der Vorst, Differential Systems with Strongly Indefinite Variational Structure. J. Fatl. Anal, vol. 114 n° 1 (1993), 32-58. Zbl0793.35038MR1220982
  8. [G] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations. In: Nonlinear Partial Differential Equations in Engineering and Applied Sciences. Editors R. Sternberg, A. Kalinovski and J. Papadakis. Marcel Dekker Inc., 1980. Zbl0444.35038MR577096
  9. [GNN] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys.68 (1979), 209-243. Zbl0425.35020MR544879
  10. [GS1] B. Gidas - J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations6 (1981), 883-901. Zbl0462.35041MR619749
  11. [GS2] B. Gidas - J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure App. Math.34 (1981), 525-598. Zbl0465.35003MR615628
  12. [J] Qing Jie, A priori estimates for positive solutions of semilinear elliptic systems, J. Partial Differential Equations1 (1988), 61-70. Zbl0682.35041MR985447
  13. [M] E. Mitidieri, A Rellich type identity and applications. To appear in Comm. Partial Differential Equations. Zbl0816.35027MR1211727
  14. [PW] M.H. Protter - H.F. Weinberger, Maximum principles in differential equations, Prentice Hall (1967). Zbl0153.13602MR219861
  15. [S] M.A. Souto, Sobre a existência de soluções positivas para sistemas cooperativos não lineares. PhD thesis, Unicamp (1992). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.