A Liouville-type theorem for elliptic systems
D. G. De Figueiredo; P. L. Felmer
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 3, page 387-397
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDe Figueiredo, D. G., and Felmer, P. L.. "A Liouville-type theorem for elliptic systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.3 (1994): 387-397. <http://eudml.org/doc/84184>.
@article{DeFigueiredo1994,
author = {De Figueiredo, D. G., Felmer, P. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {superlinear elliptic systems; Liouville-type theorem},
language = {eng},
number = {3},
pages = {387-397},
publisher = {Scuola normale superiore},
title = {A Liouville-type theorem for elliptic systems},
url = {http://eudml.org/doc/84184},
volume = {21},
year = {1994},
}
TY - JOUR
AU - De Figueiredo, D. G.
AU - Felmer, P. L.
TI - A Liouville-type theorem for elliptic systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 3
SP - 387
EP - 397
LA - eng
KW - superlinear elliptic systems; Liouville-type theorem
UR - http://eudml.org/doc/84184
ER -
References
top- [BN] H. Berestycki - L. Nirenberg, On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat.22 (1991), 1-22. Zbl0784.35025MR1159383
- [CFM] Ph. Clément - D.G. De Figueiredo - E. Mitidieri, Positive solutions of semilinear elliptic systems. Comm. Partial Differential Equations17 (1992), 923-940. Zbl0818.35027MR1177298
- [CGS] L. Caffarelli - B. Gidas - J. Spruck, Asymptotic Symmetry and local behavior of Semilinear Elliptic Equations with Critical Sobolev Growth. Comm. Pure App. Math., XLII (1989), 271-297. Zbl0702.35085MR982351
- [CL] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J.63 (1991), 615-622. Zbl0768.35025MR1121147
- [FF] D.G. De Figueiredo - P.L. Felmer, On Superquadratic Elliptic Systems. To appear in Trans. Amer. Math. Soc. Zbl0799.35063MR1214781
- [FM] D.G. De Figueiredo - E. Mitidieri, Maximum Principles for Linear Elliptic Systems. Rend. Ist. Mat. Univ. TriesteXXII (1990), 36-66. Zbl0793.35011MR1210477
- [HV] J. Hulshof - R. Van Der Vorst, Differential Systems with Strongly Indefinite Variational Structure. J. Fatl. Anal, vol. 114 n° 1 (1993), 32-58. Zbl0793.35038MR1220982
- [G] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations. In: Nonlinear Partial Differential Equations in Engineering and Applied Sciences. Editors R. Sternberg, A. Kalinovski and J. Papadakis. Marcel Dekker Inc., 1980. Zbl0444.35038MR577096
- [GNN] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys.68 (1979), 209-243. Zbl0425.35020MR544879
- [GS1] B. Gidas - J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations6 (1981), 883-901. Zbl0462.35041MR619749
- [GS2] B. Gidas - J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure App. Math.34 (1981), 525-598. Zbl0465.35003MR615628
- [J] Qing Jie, A priori estimates for positive solutions of semilinear elliptic systems, J. Partial Differential Equations1 (1988), 61-70. Zbl0682.35041MR985447
- [M] E. Mitidieri, A Rellich type identity and applications. To appear in Comm. Partial Differential Equations. Zbl0816.35027MR1211727
- [PW] M.H. Protter - H.F. Weinberger, Maximum principles in differential equations, Prentice Hall (1967). Zbl0153.13602MR219861
- [S] M.A. Souto, Sobre a existência de soluções positivas para sistemas cooperativos não lineares. PhD thesis, Unicamp (1992).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.