La théorie des classes de Chern

Alexander Grothendieck

Bulletin de la Société Mathématique de France (1958)

  • Volume: 86, page 137-154
  • ISSN: 0037-9484

How to cite

top

Grothendieck, Alexander. "La théorie des classes de Chern." Bulletin de la Société Mathématique de France 86 (1958): 137-154. <http://eudml.org/doc/86933>.

@article{Grothendieck1958,
author = {Grothendieck, Alexander},
journal = {Bulletin de la Société Mathématique de France},
keywords = {algebraic geometry},
language = {fre},
pages = {137-154},
publisher = {Société mathématique de France},
title = {La théorie des classes de Chern},
url = {http://eudml.org/doc/86933},
volume = {86},
year = {1958},
}

TY - JOUR
AU - Grothendieck, Alexander
TI - La théorie des classes de Chern
JO - Bulletin de la Société Mathématique de France
PY - 1958
PB - Société mathématique de France
VL - 86
SP - 137
EP - 154
LA - fre
KW - algebraic geometry
UR - http://eudml.org/doc/86933
ER -

References

top
  1. [1] ATIYAH (M.). — Complex analytic connections in fibre bundles (Trans. Amer. math. Soc., t. 85, 1957, p. 181-207). Zbl0078.16002MR19,172c
  2. [2] CHERN (SHUNG-SHEN). — On the characteristic classes of complex sphere bundles and algebraic varieties (Amer. J. Math., t. 75, 1953, p. 565-597). Zbl0051.14301MR15,154f
  3. [3] GROTHENDIECK (ALEXANDRE). — Théorème de dualité pour les faisceaux algébriques cohérents (Séminaire Bourbaki, t. 9, n° 149, 1956-1957). Zbl0227.14014
  4. [4] Séminaire CHEVALLEY, Classification des groupes de Lie, t. 1, 1956-1958. Zbl0092.26301

Citations in EuDML Documents

top
  1. J. M. Braemer, Classes caractéristiques des fibrés vectoriels
  2. George R. Kempf, Curves of g d 1 , s
  3. David B. Scott, The covariant systems of Todd and Segre
  4. Steven L. Kleiman, Geometry on grassmannians and applications to splitting bundles and smoothing cycles
  5. René Guitart, Fonctions d'Euler-Jordan et de Gauß et exponentielle dans les semi-anneaux de Burnside
  6. Israel Vainsencher, On a formula of Ingleton and Scott
  7. Samuel A. Ilori, Aubrey W. Ingleton, Tangent flag bundles and Jacobian varieties. Nota III
  8. Bernard Morin, Champs de vecteurs sur les sphères
  9. William Fulton, Rational equivalence on singular varieties
  10. Paul Baum, William Fulton, Robert Macpherson, Riemann-Roch for singular varieties

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.