La théorie des classes de Chern
Bulletin de la Société Mathématique de France (1958)
- Volume: 86, page 137-154
- ISSN: 0037-9484
Access Full Article
topHow to cite
topGrothendieck, Alexander. "La théorie des classes de Chern." Bulletin de la Société Mathématique de France 86 (1958): 137-154. <http://eudml.org/doc/86933>.
@article{Grothendieck1958,
author = {Grothendieck, Alexander},
journal = {Bulletin de la Société Mathématique de France},
keywords = {algebraic geometry},
language = {fre},
pages = {137-154},
publisher = {Société mathématique de France},
title = {La théorie des classes de Chern},
url = {http://eudml.org/doc/86933},
volume = {86},
year = {1958},
}
TY - JOUR
AU - Grothendieck, Alexander
TI - La théorie des classes de Chern
JO - Bulletin de la Société Mathématique de France
PY - 1958
PB - Société mathématique de France
VL - 86
SP - 137
EP - 154
LA - fre
KW - algebraic geometry
UR - http://eudml.org/doc/86933
ER -
References
top- [1] ATIYAH (M.). — Complex analytic connections in fibre bundles (Trans. Amer. math. Soc., t. 85, 1957, p. 181-207). Zbl0078.16002MR19,172c
- [2] CHERN (SHUNG-SHEN). — On the characteristic classes of complex sphere bundles and algebraic varieties (Amer. J. Math., t. 75, 1953, p. 565-597). Zbl0051.14301MR15,154f
- [3] GROTHENDIECK (ALEXANDRE). — Théorème de dualité pour les faisceaux algébriques cohérents (Séminaire Bourbaki, t. 9, n° 149, 1956-1957). Zbl0227.14014
- [4] Séminaire CHEVALLEY, Classification des groupes de Lie, t. 1, 1956-1958. Zbl0092.26301
Citations in EuDML Documents
top- J. M. Braemer, Classes caractéristiques des fibrés vectoriels
- George R. Kempf, Curves of
- David B. Scott, The covariant systems of Todd and Segre
- Steven L. Kleiman, Geometry on grassmannians and applications to splitting bundles and smoothing cycles
- René Guitart, Fonctions d'Euler-Jordan et de Gauß et exponentielle dans les semi-anneaux de Burnside
- Israel Vainsencher, On a formula of Ingleton and Scott
- Samuel A. Ilori, Aubrey W. Ingleton, Tangent flag bundles and Jacobian varieties. Nota III
- Bernard Morin, Champs de vecteurs sur les sphères
- William Fulton, Rational equivalence on singular varieties
- Paul Baum, William Fulton, Robert Macpherson, Riemann-Roch for singular varieties
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.