Fonctions L p -adiques à deux variables et 2 p -extensions

Jacques Tilouine

Bulletin de la Société Mathématique de France (1986)

  • Volume: 114, page 3-66
  • ISSN: 0037-9484

How to cite

top

Tilouine, Jacques. "Fonctions $L$$p$-adiques à deux variables et ${\mathbb {Z}}_2^p$-extensions." Bulletin de la Société Mathématique de France 114 (1986): 3-66. <http://eudml.org/doc/87518>.

@article{Tilouine1986,
author = {Tilouine, Jacques},
journal = {Bulletin de la Société Mathématique de France},
keywords = {group of rational points; elliptic curve; complex multiplication; p-adic L-function},
language = {fre},
pages = {3-66},
publisher = {Société mathématique de France},
title = {Fonctions $L$$p$-adiques à deux variables et $\{\mathbb \{Z\}\}_2^p$-extensions},
url = {http://eudml.org/doc/87518},
volume = {114},
year = {1986},
}

TY - JOUR
AU - Tilouine, Jacques
TI - Fonctions $L$$p$-adiques à deux variables et ${\mathbb {Z}}_2^p$-extensions
JO - Bulletin de la Société Mathématique de France
PY - 1986
PB - Société mathématique de France
VL - 114
SP - 3
EP - 66
LA - fre
KW - group of rational points; elliptic curve; complex multiplication; p-adic L-function
UR - http://eudml.org/doc/87518
ER -

References

top
  1. [1] BERNARDI (D.). — Hauteur p-adique sur les courbes elliptiques, in Sém. de Théorie des Nombres, 1979-1980, Birkhaüser. Zbl0475.14034
  2. [2] BERNARDI (D.), GOLDSTEIN et STEPHENS (N.). — Notes p-adiques sur les courbes elliptiques, à paraître in J. de Crelle. Zbl0529.14018
  3. [3] COATES (J.). — Cours polycopié H. Weyl lectures, Princeton, 1979. 
  4. [4] COATES (J. and WILES (A.). — On the conjecture of Birch and Swinnerton-Dyer (inv. Math., vol. 39, 1977, p. 223-251). Zbl0359.14009MR57 #3134
  5. [5] COATES (J.) and WILES (A.). — On p-adic L functions and elliptic units (J. of the Austral. Math. Soc., vol. 26, 1978, p. 1-25). Zbl0442.12007MR80a:12007
  6. [6] DE SHALIT (E.). — Thesis, Princeton, 1983. 
  7. [7] DE SHALIT (E.) et YAGER (R.). — Article à paraître. 
  8. [8] DEURING (M.). — Die Zetafunktion einer algebräischen Kurve vom Geschlechte Eins (Nachr. Akad. Wiss. Gött., 1953, p. 85-94). Zbl0064.27401MR15,779d
  9. [9] GOLDSTEIN (C.) et SCHAPPACHER (N.). — Séries d'Eisenstein et fonctions L de courbes elliptiques à multiplication complexe (J. de Crelle, vol. 327, 1981, p. 184-218). Zbl0456.12007MR82m:12007
  10. [10] GREENBERG (R.). — On the conjecture of Birch and Swinnerton-Dyer (Inv. Math., vol. 72, 1983, p. 241-265. Zbl0546.14015MR85c:11052
  11. [11] GROSS (B.). — Arithmetic on elliptic curves with complex multiplication (Lect. Notes n° 776, Springer, 1980). Zbl0433.14032MR81f:10041
  12. [12] KATZ (N.). — p-adic interpolation of real analytic Eisenstein series (Ann. of Math., vol. 104, 1976, p. 459-571). Zbl0354.14007MR58 #22071
  13. [13] KATZ (N.). — p-adic L functions via moduli of elliptic curves, in Proc. of Symp. in Pure Math., Arcata, A.M.S., 1975. Zbl0317.14009MR55 #5635
  14. [14] LUBIN (J.). — One parameter formal Lie groups over ℬ-adic integer rings (Ann. of Math., vol. 80, 1964, p. 464-484). Zbl0135.07003MR29 #5827
  15. [15] LUBIN (J.) and TATE (J.). — On formal groups with formal complex multiplication in local fields (Ann. of Math., vol. 81, 1965, p. 380-387). Zbl0128.26501MR30 #3094
  16. [16] PERRIN-RIOU (B.). — Groupe de Selmer d'une courbe elliptique à multiplication complexe (Comp. Math., vol. 43, 1981, p. 387-417). Zbl0479.14019MR83i:14031
  17. [17] RUBIN (K.). — Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer (Inv. Math., vol. 64, 1981, p. 455-470). Zbl0506.14039MR83f:10034
  18. [18] SERRE J.-P. and TATE (J.). — Good reduction of abelian varieties (Ann. of Math., vol. 88, 1968, p. 492-517). Zbl0172.46101MR38 #4488
  19. [19] SHIMURA (G.). — Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publ., 1971. Zbl0221.10029
  20. [20] SHIMURA (G.). — On the zeta function of an abelian variety with complex multiplication (Ann. of Math., vol. 94, 1971, p. 504-533). Zbl0242.14009MR44 #5287
  21. [21] SHIMURA (G.) and TANTYAMA (Y.). — Complex multiplication of abelian varieties and its application to number theory, Pub. of Math. Soc. of Japan, 1951. 
  22. [22] SOŨTO-MEÑENDEZ (J.-M.). — On the extensions of local fields generated by torsion points of some formal groups (J. of Algebra, vol. 81, 1983, p. 58-69). Zbl0513.14027MR84k:12007
  23. [23] TATE (J.). — Local constants, in Algebraic number fields, A. FRÖHLICH éd., Academic Press, 1980. 
  24. [24] TATE (J.). — Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Lect. Notes n° 476, Springer, 1970). MR52 #13850
  25. [25] TATE (J.). — On p-divisible groups, in Proceed. of the conf. in Driebergen, Springer, 1966. Zbl0157.27601
  26. [26] WEIL (A.). — On a certain type of characters of the idele-class group of an algebraic number field, in uvres Scientifiques, 1955 c, tome 2, Springer, 1978. 
  27. [27] WEIL (A.). — Elliptic functions according to Kronecker and Eisenstein, Erg. der Math. Wiss. n°88, Springer, 1976. Zbl0318.33004MR58 #27769a
  28. [28] WEIL (A.). — Adeles and algebraic groups, Birkhäuser, 1980. 
  29. [29] YAGER (R.). — On p-adic L functions with two variables (Ann. of Math., vol. 115, 1982, p. 411-449). Zbl0496.12010MR84b:14020
  30. [30] YAGER (R.). — p-adic measures on Galois groups (Inv. Math., vol. 76, 1984, p. 331-343). Zbl0555.12006MR86b:11045
  31. [31] MANIN (Y.) and VISHIK (M.). — p-adic Hecke series for imaginary quadratic fields (Math. Sbornik, vol. 95, 1974, p. 357-383). Zbl0352.12013MR51 #8078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.