Fonctions -adiques à deux variables et -extensions
Bulletin de la Société Mathématique de France (1986)
- Volume: 114, page 3-66
- ISSN: 0037-9484
Access Full Article
topHow to cite
topTilouine, Jacques. "Fonctions $L$$p$-adiques à deux variables et ${\mathbb {Z}}_2^p$-extensions." Bulletin de la Société Mathématique de France 114 (1986): 3-66. <http://eudml.org/doc/87518>.
@article{Tilouine1986,
author = {Tilouine, Jacques},
journal = {Bulletin de la Société Mathématique de France},
keywords = {group of rational points; elliptic curve; complex multiplication; p-adic L-function},
language = {fre},
pages = {3-66},
publisher = {Société mathématique de France},
title = {Fonctions $L$$p$-adiques à deux variables et $\{\mathbb \{Z\}\}_2^p$-extensions},
url = {http://eudml.org/doc/87518},
volume = {114},
year = {1986},
}
TY - JOUR
AU - Tilouine, Jacques
TI - Fonctions $L$$p$-adiques à deux variables et ${\mathbb {Z}}_2^p$-extensions
JO - Bulletin de la Société Mathématique de France
PY - 1986
PB - Société mathématique de France
VL - 114
SP - 3
EP - 66
LA - fre
KW - group of rational points; elliptic curve; complex multiplication; p-adic L-function
UR - http://eudml.org/doc/87518
ER -
References
top- [1] BERNARDI (D.). — Hauteur p-adique sur les courbes elliptiques, in Sém. de Théorie des Nombres, 1979-1980, Birkhaüser. Zbl0475.14034
- [2] BERNARDI (D.), GOLDSTEIN et STEPHENS (N.). — Notes p-adiques sur les courbes elliptiques, à paraître in J. de Crelle. Zbl0529.14018
- [3] COATES (J.). — Cours polycopié H. Weyl lectures, Princeton, 1979.
- [4] COATES (J. and WILES (A.). — On the conjecture of Birch and Swinnerton-Dyer (inv. Math., vol. 39, 1977, p. 223-251). Zbl0359.14009MR57 #3134
- [5] COATES (J.) and WILES (A.). — On p-adic L functions and elliptic units (J. of the Austral. Math. Soc., vol. 26, 1978, p. 1-25). Zbl0442.12007MR80a:12007
- [6] DE SHALIT (E.). — Thesis, Princeton, 1983.
- [7] DE SHALIT (E.) et YAGER (R.). — Article à paraître.
- [8] DEURING (M.). — Die Zetafunktion einer algebräischen Kurve vom Geschlechte Eins (Nachr. Akad. Wiss. Gött., 1953, p. 85-94). Zbl0064.27401MR15,779d
- [9] GOLDSTEIN (C.) et SCHAPPACHER (N.). — Séries d'Eisenstein et fonctions L de courbes elliptiques à multiplication complexe (J. de Crelle, vol. 327, 1981, p. 184-218). Zbl0456.12007MR82m:12007
- [10] GREENBERG (R.). — On the conjecture of Birch and Swinnerton-Dyer (Inv. Math., vol. 72, 1983, p. 241-265. Zbl0546.14015MR85c:11052
- [11] GROSS (B.). — Arithmetic on elliptic curves with complex multiplication (Lect. Notes n° 776, Springer, 1980). Zbl0433.14032MR81f:10041
- [12] KATZ (N.). — p-adic interpolation of real analytic Eisenstein series (Ann. of Math., vol. 104, 1976, p. 459-571). Zbl0354.14007MR58 #22071
- [13] KATZ (N.). — p-adic L functions via moduli of elliptic curves, in Proc. of Symp. in Pure Math., Arcata, A.M.S., 1975. Zbl0317.14009MR55 #5635
- [14] LUBIN (J.). — One parameter formal Lie groups over ℬ-adic integer rings (Ann. of Math., vol. 80, 1964, p. 464-484). Zbl0135.07003MR29 #5827
- [15] LUBIN (J.) and TATE (J.). — On formal groups with formal complex multiplication in local fields (Ann. of Math., vol. 81, 1965, p. 380-387). Zbl0128.26501MR30 #3094
- [16] PERRIN-RIOU (B.). — Groupe de Selmer d'une courbe elliptique à multiplication complexe (Comp. Math., vol. 43, 1981, p. 387-417). Zbl0479.14019MR83i:14031
- [17] RUBIN (K.). — Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer (Inv. Math., vol. 64, 1981, p. 455-470). Zbl0506.14039MR83f:10034
- [18] SERRE J.-P. and TATE (J.). — Good reduction of abelian varieties (Ann. of Math., vol. 88, 1968, p. 492-517). Zbl0172.46101MR38 #4488
- [19] SHIMURA (G.). — Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publ., 1971. Zbl0221.10029
- [20] SHIMURA (G.). — On the zeta function of an abelian variety with complex multiplication (Ann. of Math., vol. 94, 1971, p. 504-533). Zbl0242.14009MR44 #5287
- [21] SHIMURA (G.) and TANTYAMA (Y.). — Complex multiplication of abelian varieties and its application to number theory, Pub. of Math. Soc. of Japan, 1951.
- [22] SOŨTO-MEÑENDEZ (J.-M.). — On the extensions of local fields generated by torsion points of some formal groups (J. of Algebra, vol. 81, 1983, p. 58-69). Zbl0513.14027MR84k:12007
- [23] TATE (J.). — Local constants, in Algebraic number fields, A. FRÖHLICH éd., Academic Press, 1980.
- [24] TATE (J.). — Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Lect. Notes n° 476, Springer, 1970). MR52 #13850
- [25] TATE (J.). — On p-divisible groups, in Proceed. of the conf. in Driebergen, Springer, 1966. Zbl0157.27601
- [26] WEIL (A.). — On a certain type of characters of the idele-class group of an algebraic number field, in uvres Scientifiques, 1955 c, tome 2, Springer, 1978.
- [27] WEIL (A.). — Elliptic functions according to Kronecker and Eisenstein, Erg. der Math. Wiss. n°88, Springer, 1976. Zbl0318.33004MR58 #27769a
- [28] WEIL (A.). — Adeles and algebraic groups, Birkhäuser, 1980.
- [29] YAGER (R.). — On p-adic L functions with two variables (Ann. of Math., vol. 115, 1982, p. 411-449). Zbl0496.12010MR84b:14020
- [30] YAGER (R.). — p-adic measures on Galois groups (Inv. Math., vol. 76, 1984, p. 331-343). Zbl0555.12006MR86b:11045
- [31] MANIN (Y.) and VISHIK (M.). — p-adic Hecke series for imaginary quadratic fields (Math. Sbornik, vol. 95, 1974, p. 357-383). Zbl0352.12013MR51 #8078
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.