The 3D navier-stokes equations seen as a perturbation of the 2D navier-stokes equations

Dragoş Iftimie

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 4, page 473-517
  • ISSN: 0037-9484

How to cite

top

Iftimie, Dragoş. "The 3D navier-stokes equations seen as a perturbation of the 2D navier-stokes equations." Bulletin de la Société Mathématique de France 127.4 (1999): 473-517. <http://eudml.org/doc/87816>.

@article{Iftimie1999,
author = {Iftimie, Dragoş},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Navier-Stokes equations; asymptotic study; existence; uniqueness},
language = {eng},
number = {4},
pages = {473-517},
publisher = {Société mathématique de France},
title = {The 3D navier-stokes equations seen as a perturbation of the 2D navier-stokes equations},
url = {http://eudml.org/doc/87816},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Iftimie, Dragoş
TI - The 3D navier-stokes equations seen as a perturbation of the 2D navier-stokes equations
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 4
SP - 473
EP - 517
LA - eng
KW - Navier-Stokes equations; asymptotic study; existence; uniqueness
UR - http://eudml.org/doc/87816
ER -

References

top
  1. [1] AVRIN (J.D.). — Large-eigenvalue global existence and regularity results for the Navier-Stokes equation, J. Diff. Equations, t. 127, n° 2, 1996, p. 365-390. Zbl0863.35075MR97b:35138
  2. [2] BONY (J.-M.). — Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., t. 14, n° 2, 1981, p. 209-246. Zbl0495.35024MR84h:35177
  3. [3] CHEMIN (J.-Y.). — Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., t. 23, n° 1, 1992, p. 20-28. Zbl0762.35063MR93a:35118
  4. [4] CHEMIN (J.-Y.). — Fluides parfaits incompressibles, Astérisque, 230, 1995, p. 177. Zbl0829.76003MR97d:76007
  5. [5] CHEMIN (J.-Y.), LERNER (N.). — Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Equations, t. 121, n° 2, 1995, p. 314-328. Zbl0878.35089MR96h:35153
  6. [6] EDWARDS (R.E.), GAUDRY (G.I.). — Littlewood-Paley and multiplier theory. — Springer-Verlag, Berlin, 1977. Zbl0464.42013MR58 #29760
  7. [7] IFTIMIE (D.). — The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoamericana, t. 15, n° 1, 1999. Zbl0923.35119MR2000a:35194
  8. [8] MOISE (I.), TEMAM (R.), ZIANE (M.). — Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal., t. 10, n° 2, 1997, p. 249-282. Zbl0957.35108MR99h:35166
  9. [9] PONCE (G.), RACKE (R.), SIDERIS (T.C.), TITI (E.S.). — Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., t. 159, n° 2, 1994, p. 329-341. Zbl0795.35082MR95a:35115
  10. [10] RAUGEL (G.), SELL (G.R.). — Navier-Stokes equations on thin 3D domains, I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., t. 6, n° 3, 1993, p. 503-568. Zbl0787.34039MR93j:35134
  11. [11] RAUGEL (G.), SELL (G.R.). — Navier-Stokes equations on thin 3D domains, II. Global regularity of spatially periodic solutions, Nonlinear partial differential equations and their applications. — Collège de France Seminar, Vol. XI, Longman Sci. Tech., Harlow, 1994, p. 205-247. Zbl0804.35106MR95c:35196
  12. [12] TEMAM (R.), ZIANE (M.). — Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Diff. Equations, t. 1, n° 4, 1996, p. 499-546. Zbl0864.35083MR97h:35183
  13. [13] TEMAM (R.), ZIANE (M.). — Navier-Stokes equations in thin spherical domains, Optimization methods in partial differential equations (South Hadley, MA, 1996). — Amer. Math. Soc., Providence, RI, 1997, p. 281-314. Zbl0891.35119MR98h:35194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.