The Plancherel theorem for general semisimple groups

Rebecca A. Herb; Joseph A. Wolf

Compositio Mathematica (1986)

  • Volume: 57, Issue: 3, page 271-355
  • ISSN: 0010-437X

How to cite

top

Herb, Rebecca A., and Wolf, Joseph A.. "The Plancherel theorem for general semisimple groups." Compositio Mathematica 57.3 (1986): 271-355. <http://eudml.org/doc/89757>.

@article{Herb1986,
author = {Herb, Rebecca A., Wolf, Joseph A.},
journal = {Compositio Mathematica},
keywords = {Plancherel theorem; semisimple Lie groups; reductive Lie groups},
language = {eng},
number = {3},
pages = {271-355},
publisher = {Martinus Nijhoff Publishers},
title = {The Plancherel theorem for general semisimple groups},
url = {http://eudml.org/doc/89757},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Herb, Rebecca A.
AU - Wolf, Joseph A.
TI - The Plancherel theorem for general semisimple groups
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 3
SP - 271
EP - 355
LA - eng
KW - Plancherel theorem; semisimple Lie groups; reductive Lie groups
UR - http://eudml.org/doc/89757
ER -

References

top
  1. 1 P. Dourmashkin: Ph.D. Thesis, MIT (1984). 
  2. 2 M. Duflo: On the Plancherel formula of almost-algebraic real Lie groups, Lie Group Representations III, Proceedings, Univ. of Maryland 1982-1983, Lecture Notes in Math., Vol. 1077, Springer-Verlag, Berlin and New York, 101-165. Zbl0546.22014MR765553
  3. 3 T.J. Enright, R. HowE and N.R. Wallach: A classification of unitary highest weight modules, Representation Theory of Reductive Groups (Proceedings, Utah, 1982), Birkhäuser (1983) 97-143. Zbl0535.22012MR733809
  4. 4 T.J. Enright, R. Parthasarathy, N.R. Wallach, and J.A. Wolf: 
  5. (a) Classes of unitarizable derived functor modules, Proc. Nat. Acad. Sci., U.S.A.80 (1983) 7047-7050. Zbl0527.22007
  6. (b) Unitary derived functor modules with small spectrum, Acta Math.154 (1985) 105-136. Zbl0568.22007MR772433
  7. 5 T.J. Enright and J.A. Wolf: Continuation of unitary derived functor modules out of the canonical chamberAnalyse Harmonique sur les Groupes de Lie et les èspaces symétriques, Actes du colloque du Kleebach, 1983, Mémoire de la Societé Math. de France, 112 (1984) 139-156. Zbl0582.22013MR789083
  8. 6 Harish-Chandra: (a) Discrete series for semisimple Lie groups I, Acta Math.113 (1965) 241-318. Zbl0152.13402MR219665
  9. (b) Harmonic analysis on real reductive groups I, J. Funct. Anal.19 (1975) 104-204. Zbl0315.43002MR399356
  10. (c) Harmonic analysis on real reductive groups, II. Inv. Math., 36 (1976) 1-55. Zbl0341.43010MR439993
  11. (d) Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976) 117-201. Zbl0331.22007MR439994
  12. 7 R. Herb:(a) Fourier inversion of invariant integrals on semisimple real Lie groups, TAMS249 (1979) 281-302. Zbl0419.22015MR525674
  13. (b) Fourier inversion and the Plancherel theorem for semisimple real Lie gioups, Amer. J. Math.104 (1982) 9-58. Zbl0499.43007MR648480
  14. (c) Fourier inversion and the Plancherel theorem (Proc. Marseille Conf., 1980), Lecture Notes in Math., Vol. 880, Springer-Verlag, Berlin and New York, 197-210. Zbl0467.43005MR644834
  15. (d) Discrete series characters and Fourier inversion on semisimple real Lie groups, TAMS, 277 (1983) 241-261. Zbl0516.22007MR690050
  16. (e) The Plancherel theorem for semisimple groups without compact Cartan subgroups (Proc. Marseille Conf. 1982), Lecture Notes in Math. Vol. 1020, Springer-Verlag, Berlin and New York, 73-79. Zbl0523.43006
  17. 8 R. Herb and P. Sally: Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions, J. Funct. Anal.33 (1979) 195-210. Zbl0417.22011MR546506
  18. 9 L. Punkánszky: The Plancherel formula for the universal covering group of SL(2, R), Math. Ann.156 (1964) 96-143. Zbl0171.33903MR170981
  19. 10 P.J. Sally, Jr.: Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R), Mem. AMS69 (1967). Zbl0157.20702
  20. 11 P. Sally and G. Warner: The Fourier transform on semisimple Lie groups of real rank one, Acta Math.131 (1973) 1-26. Zbl0305.43007MR450461
  21. 12 D. Shelstad: Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. Ecole Norm. Sup.12 (1979) 1-31. Zbl0433.22006MR532374
  22. 13 M. Vergne: A Poisson-Plancherel formula for semisimple Lie groups, Ann. of Math., 115 (1982) 639-666. Zbl0501.43006MR657242
  23. 14 D. Vogan, Jr.: Unitarizability of certain series of representations, Ann. of Math., 120 (1984) 141-187. Zbl0561.22010MR750719
  24. 15 N. Wallach: The analytic continuation of the discrete series I, II, T.A.M.S., 251 (1979) 1-17, 19-37. Zbl0419.22018MR531967
  25. 16 G. Warner: Harmonic Analysis on Semisimple Lie groups, Vol. I, II, Springer-Verlag, Berlin and New York, 1972. Zbl0265.22020
  26. 17 J.A. Wolf: (a) Spectrum of a reductive Lie group, AMS PSPM, Vol. 25, (1974) 305-312. Zbl0298.43015MR369620
  27. (b) Geometric realizations of representations of reductive Lie groups, AMS PSPM, Vol. 25 (1974) 313-316. Zbl0282.43010MR369621
  28. (c) Unitary representations on partially holomorphic cohomology spaces, Mem. AMS.138 (1974). Zbl0288.22022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.