On a diophantine equation involving quadratic characters

Karl Dilcher

Compositio Mathematica (1986)

  • Volume: 57, Issue: 3, page 383-403
  • ISSN: 0010-437X

How to cite

top

Dilcher, Karl. "On a diophantine equation involving quadratic characters." Compositio Mathematica 57.3 (1986): 383-403. <http://eudml.org/doc/89760>.

@article{Dilcher1986,
author = {Dilcher, Karl},
journal = {Compositio Mathematica},
keywords = {finite number of solutions; primitive quadratic residue class character; generalized Bernoulli polynomials},
language = {eng},
number = {3},
pages = {383-403},
publisher = {Martinus Nijhoff Publishers},
title = {On a diophantine equation involving quadratic characters},
url = {http://eudml.org/doc/89760},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Dilcher, Karl
TI - On a diophantine equation involving quadratic characters
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 3
SP - 383
EP - 403
LA - eng
KW - finite number of solutions; primitive quadratic residue class character; generalized Bernoulli polynomials
UR - http://eudml.org/doc/89760
ER -

References

top
  1. [1] B.C. Berndt: Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications, J. Number Theory7 (1975) 413-445. Zbl0316.10023MR382187
  2. [2] J. Brillhart: On the Euler and Bernoulli polynomials, J. Reine Angew. Math.234 (1969) 45-64. Zbl0167.35401MR242790
  3. [3] B. Brindza: On S-integral solutions of the equation ym = f(x), Acta Math. Hung.44 (1984) 133-139. Zbl0552.10009MR759041
  4. [4] L. Carlitz: A conjecture concerning the Euler numbers, Amer. Math. Monthly69 (1962) 538-540. Zbl0105.26403MR1531734
  5. [5] K. Dilcher: Irreducibilty of generalized Bernoulli polynomials, preprint. Zbl0558.10012
  6. [6] K. Dilcher: Asymptotic behaviour of Bernoulli, Euler, and generalzed Bernoulli polynomials, to appear in J. Approx. Theory. Zbl0609.10008MR881502
  7. [7] R.J. Duffin: Algorithms for localizing roots of a polynomial and the Pisot Vijayaraghavan numbers, Pacific J. Math.74 (1978) 47-56. Zbl0381.12001MR480414
  8. [8] R. Ernvall: Generalized Bernoulli numbers, generalized irregular primes, and class numbers, Ann. Univ. Turku, Ser. AI, 178 (1979) 72 p. Zbl0403.12010MR533377
  9. [9] K. Györy, R. Tijdeman and M. Voorhoeve: On the equation 1k + 2k + ··· + xk = yz, Acta Arith.37 (1980), 233-240. Zbl0365.10014MR598878
  10. [10] K. Iwasawa: Lectures on p-acid L-functions, Princeton University Press (1972). Zbl0236.12001MR360526
  11. [11] D.E. Knuth and T.J. Buckholtz: Computation of tangent. Euler, and Bernoulli numbers. Math. Comp.21 (1967) 663-688. Zbl0178.04401MR221735
  12. [12] L.J. Mordell: Diophantine equations, Academic Press, London (1969). Zbl0188.34503MR249355
  13. [13] N. Nörlund: Vorlesungen über Differenzenrechung, Springer Verlag, Berlin (1924). 
  14. [14] G. Polya and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, Springer Verlag, Berlin (1925). Zbl51.0173.01JFM51.0173.01
  15. [15] J.J. Schäffer: The equation 1p + 2p + 3p + ··· + np = mq, Acta Math.95 (1956) 155-189. Zbl0071.03702
  16. [16] M. Voorhoeve, K. Györy and R. Tijdeman: On the diophantine equation 1k + 2k + ··· + xk + R(x) = yz, Acta Math.143 (1979) 1-8. Zbl0426.10019MR523394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.