Rapidly decreasing functions on general semisimple groups

Rebecca A. Herb; Joseph A. Wolf

Compositio Mathematica (1986)

  • Volume: 58, Issue: 1, page 73-110
  • ISSN: 0010-437X

How to cite

top

Herb, Rebecca A., and Wolf, Joseph A.. "Rapidly decreasing functions on general semisimple groups." Compositio Mathematica 58.1 (1986): 73-110. <http://eudml.org/doc/89766>.

@article{Herb1986,
author = {Herb, Rebecca A., Wolf, Joseph A.},
journal = {Compositio Mathematica},
keywords = {rapidly decreasing functions; Plancherel theorem; reductive Lie groups; Schwartz spaces},
language = {eng},
number = {1},
pages = {73-110},
publisher = {Martinus Nijhoff Publishers},
title = {Rapidly decreasing functions on general semisimple groups},
url = {http://eudml.org/doc/89766},
volume = {58},
year = {1986},
}

TY - JOUR
AU - Herb, Rebecca A.
AU - Wolf, Joseph A.
TI - Rapidly decreasing functions on general semisimple groups
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 58
IS - 1
SP - 73
EP - 110
LA - eng
KW - rapidly decreasing functions; Plancherel theorem; reductive Lie groups; Schwartz spaces
UR - http://eudml.org/doc/89766
ER -

References

top
  1. [1] W. Casselman and D. Miličić: Asymptotic behavior of matrix coefficients of admissible representations, Duke Math . J.49 (1982) 869-930. Zbl0524.22014MR683007
  2. [2] Harish- Chandra: (a) Invariant eigendistributions on a semisimple Lie group. TAMS119 (1965) 457-508. Zbl0199.46402MR180631
  3. (b) Discrete series for semisimple Lie groups, I. Acta Math.113 (1965) 241-318. Zbl0152.13402MR219665
  4. (c) Discrete series for semisimple Lie groups, II. Acta Math.116 (1966) 1-111. Zbl0199.20102MR219666
  5. (d) Harmonic analysis on real reductive groups, I. J. Funct. Anal.19 (1975) 104-204. Zbl0315.43002MR399356
  6. (e) Harmonic analysis on real reductive groups, II. Inv. Math.36 (1976) 1-55. Zbl0341.43010MR439993
  7. (f) Harmonic analysis on real reductive groups, III. Ann. of Math.104 (1976) 117-201. Zbl0331.22007MR439994
  8. [3] R.A. Herb: Discrete series characters and Fourier inversion on semisimple real Lie groups. TAMS277 (1983) 241-261. Zbl0516.22007MR690050
  9. [4] R.A. Herb and J.A. Wolf: The Plancherel theorem for general semisimple groups. Comp. Math.57 (1986), 271-355. Zbl0587.22005MR829325
  10. [5] G. Warner: Harmonic Analysis on Semisimple Lie Groups, Vol. II, Springer-Verlag, Berlin and New York (1972). Zbl0265.22021
  11. [6] J.A. Wolf: Unitary representations on partially holomorphic cohomology spaces. Mem. AMS138 (1974). Zbl0288.22022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.