On diophantine equations involving sums of powers with quadratic characters as coefficients, I

Jerzy Urbanowicz

Compositio Mathematica (1994)

  • Volume: 92, Issue: 3, page 249-271
  • ISSN: 0010-437X

How to cite

top

Urbanowicz, Jerzy. "On diophantine equations involving sums of powers with quadratic characters as coefficients, I." Compositio Mathematica 92.3 (1994): 249-271. <http://eudml.org/doc/90306>.

@article{Urbanowicz1994,
author = {Urbanowicz, Jerzy},
journal = {Compositio Mathematica},
keywords = {exponential diophantine equations; Bernoulli polynomials; superelliptic equations},
language = {eng},
number = {3},
pages = {249-271},
publisher = {Kluwer Academic Publishers},
title = {On diophantine equations involving sums of powers with quadratic characters as coefficients, I},
url = {http://eudml.org/doc/90306},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Urbanowicz, Jerzy
TI - On diophantine equations involving sums of powers with quadratic characters as coefficients, I
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 3
SP - 249
EP - 271
LA - eng
KW - exponential diophantine equations; Bernoulli polynomials; superelliptic equations
UR - http://eudml.org/doc/90306
ER -

References

top
  1. [1] B. Brindza: On S-integral solutions of the equation f(x) = ym. Acta Math. Acad. Sci. Hungar. 44 (1984) 133-139. Zbl0552.10009MR759041
  2. [2] K. Dilcher: On a diophantine equation involving quadratic characters. Compositio Math.57 (1986) 383-403. Zbl0584.10008MR829328
  3. [3] W.J. Leveque: On the equation ym = f(x). Acta Arith.9 (1964) 209-219. Zbl0127.27201MR169813
  4. [4] A. Schinzel and R. Tijdeman: On the equation ym = f(x). Acta Arith.31 (1976) 199-204. Zbl0303.10016MR422150
  5. [5] J. Urbanowicz: On the 2-primary part of a conjecture of Birch-Tate. Acta Arith.43 (1983) 69-81 and Corr., to appear. Zbl0529.12008MR730849
  6. [6] J. Urbanowicz: Connections between B2,χ for even quadratic characters χ and class numbers of appropriate imaginary quadratic fields. I. Compositio Math.75 (1990) 247-270. Zbl0706.11058
  7. [7] J. Urbanowicz: On some new congruences between generalized Bernoulli numbers. I. Publications Math. de la Fac. des Sci. de Besançon, Theorie des Nombres, Années 1990/ 1991. Zbl0748.11017
  8. [8] M. Voorhoeve, K. Györy and R. Tijdeman: On the diophantine equation 1k + 2k + ··· + xk + R(x) = y z. Acta Math. 143 (1979) 1-8 and Corr. 159 (1987) 151-152. Zbl0632.10017MR906528
  9. [9] L. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, Berlin, Heidelberg, New York, 1982. Zbl0484.12001MR718674
  10. [10] A. Wiles: The Iwasawa conjecture for totally real fields. Ann. of Math.131 (1990) 493-540. Zbl0719.11071MR1053488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.