The equivalence of -groupoids and cubical -complexes
Ronald Brown; Philip J. Higgins
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1981)
- Volume: 22, Issue: 4, page 349-370
- ISSN: 1245-530X
Access Full Article
topHow to cite
topBrown, Ronald, and Higgins, Philip J.. "The equivalence of $\omega $-groupoids and cubical $T$-complexes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 22.4 (1981): 349-370. <http://eudml.org/doc/91279>.
@article{Brown1981,
author = {Brown, Ronald, Higgins, Philip J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {cubical complexes; Kan complexes; T-complexes; thin elements; omega- groupoids; isomorphism of categories; Seifert-van Kampen theorem},
language = {eng},
number = {4},
pages = {349-370},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The equivalence of $\omega $-groupoids and cubical $T$-complexes},
url = {http://eudml.org/doc/91279},
volume = {22},
year = {1981},
}
TY - JOUR
AU - Brown, Ronald
AU - Higgins, Philip J.
TI - The equivalence of $\omega $-groupoids and cubical $T$-complexes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1981
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 22
IS - 4
SP - 349
EP - 370
LA - eng
KW - cubical complexes; Kan complexes; T-complexes; thin elements; omega- groupoids; isomorphism of categories; Seifert-van Kampen theorem
UR - http://eudml.org/doc/91279
ER -
References
top- 1 N. Ashley, T-complexes and crossed complexes, Ph. D. Thesis, University of Wales, 1978. Zbl0558.55015MR766239
- 2 A.L. Blakers, Some relations between homology and homotopy groups, Ann. of Math.49 (1948), 428 - 461. Zbl0040.25701MR24132
- 3 R. Brown, Higher dimensional group theory, in Low dimensional topology, ed. Brown & Thickstun, London Math. Soc. Lecture Notes48, Cambridge, 1982. Zbl0484.55007MR662433
- 4 R. Brown& P.J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra, 21 (1981), 233- 260. Zbl0468.55007MR617135
- 5 R. Brown& P.J. Higgins, Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra, 22 (1981), 11-41. Zbl0475.55009MR621285
- 6 R. Brown & P.J. Higgins, The equivalence of ∞-groupoids and crossed complexes, This same issue.
- 7 M.K. Dakin, Kan complexes and multiple groupoid structures, Ph. D. Thesis, University of Wales, 1977. Zbl0566.55010MR766238
- 8 A. Dold, Homology of symmetric products and other functors of complexes, Ann. of Math.68 (1958), 54-80. Zbl0082.37701MR97057
- 9 J. Howie, Pullback functors and crossed complexes, Cahiers Topo. et Géom. Diff. XX-3 (1979), 281-296. Zbl0429.18007MR557084
- 10 D.M. Kan, Abstract homotopy theory I, Proc. Nat. Acad. Sci. U.S.A.41 (1955), 1092-1096. Zbl0065.38601MR79762
- 11 D.M. Kan, Functors involving c. s. s. complexes, Trans. A.M.S.87 (1958), 330 - 346. Zbl0090.39001MR131873
- 12 J.H.C. Whitehead, Combinatorial homotopy II, Bull. A.M.S.55 (1949), 453-496. Zbl0040.38801MR30760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.