Cartesian spaces over T and locales over Ω ( T )

S. B. Niefield

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1982)

  • Volume: 23, Issue: 3, page 257-267
  • ISSN: 1245-530X

How to cite

top

Niefield, S. B.. "Cartesian spaces over $T$ and locales over $\Omega (T)$." Cahiers de Topologie et Géométrie Différentielle Catégoriques 23.3 (1982): 257-267. <http://eudml.org/doc/91302>.

@article{Niefield1982,
author = {Niefield, S. B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {inclusion map; category of spaces; sober space; locally compact internal locales; topos of sheaves},
language = {eng},
number = {3},
pages = {257-267},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Cartesian spaces over $T$ and locales over $\Omega (T)$},
url = {http://eudml.org/doc/91302},
volume = {23},
year = {1982},
}

TY - JOUR
AU - Niefield, S. B.
TI - Cartesian spaces over $T$ and locales over $\Omega (T)$
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1982
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 23
IS - 3
SP - 257
EP - 267
LA - eng
KW - inclusion map; category of spaces; sober space; locally compact internal locales; topos of sheaves
UR - http://eudml.org/doc/91302
ER -

References

top
  1. 1 J. B Enabou, Treillis locaux et p aratopologie, Cahiers Topo. et Géom. Diff.I (1957/ 58), Exposé 2. Zbl0134.40704
  2. 2 B.J. Day& G.M. Kelly, On topological quotients preserved by pullbacks and products, Proc. Cambridge Phil. Soc.67 (1970), 553- 558. Zbl0191.20801MR254817
  3. 3 C.H. Docker & D. Papert, Quotient frames and subspaces, Proc. London Math. Soc.16 (1966), 275 - 296. Zbl0136.43405MR202648
  4. 4 M.P. Fourman & D.S. Scott, Sheaves and logic, Lecture Notes in Math.753(1979), 302-401. Zbl0415.03053MR555551
  5. 5 P. Freyd, Abelian categories, Harper & Row, New York1964. Zbl0121.02103MR166240
  6. 6 P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc.7 (1972), 1-76. Zbl0252.18001MR396714
  7. 7 G. Gierz & al, A compendium of continuous lattices, Springer, 1980. Zbl0452.06001MR614752
  8. 8 K.H. Hoffmann & J.D. Lawson, The spectral theory of distributive continuous lattices, Trans. A. M. S.246 (1978), 285 - 310. Zbl0402.54043MR515540
  9. 9 J.M.E. Hyland, Function spaces in the category of locales, Continuous lattices, Lecture Notes in Math.871, Springer (1981), 264-281. Zbl0483.54005
  10. 10 J.R. Isbell, Function spaces and adjoints, Math. Scand.36 (1975), 317- 339. Zbl0309.54016MR405340
  11. 11 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5 - 32. Zbl0246.54028MR358725
  12. 12 P.T. Johnstone, Topos Theory, L.M.S. Math.Mono. 0, Acad. Press1977. Zbl0368.18001MR470019
  13. 13 P.T. Johnstone, Tychonoff's Theorem without the axiom of choice, Fund. Math. Zbl0503.54006
  14. 14 P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Inst. Math. Pures Univ. Cath.Louvain, Rapport 79 (1979). 
  15. 15 P.T. Johnstone, The Gleason cover of a topos, II, J. Pure and Appl. Alg. to appear. Zbl0445.18005MR629332
  16. 16 C.J. Mikkelsen, Lattice-theoretic and logical aspects of elementary topoi, Aarhus Univ. Various Publ. Series 25(1976). Zbl0345.18006MR429560
  17. 17 S.B. Niefield, Cartesianness: topological spaces, uniform spaces and affine scheme s, J. Pure and A ppl. Alg.23 (1982), 147-167. Zbl0475.18011MR639571
  18. 18 S.B. Niefield, Cartesian inclusions: locales and toposes, Comm. in Alg.9 (16) (1981), 1639-1671. Zbl0497.18009MR630579
  19. 19 D.S. Scott, Continuous lattices, Lecture Notes in Math.274, Springer (1972) 97-137. Zbl0239.54006MR404073
  20. 20 H. Simmons, A framework for topology, Proc. Wroclaw logic Conference 1977North-Holland (to appe ar) . Zbl0493.06005MR519819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.