The shift functor and the comprehensive factorization for internal groupoids

Dominique Bourn

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1987)

  • Volume: 28, Issue: 3, page 197-226
  • ISSN: 1245-530X

How to cite

top

Bourn, Dominique. "The shift functor and the comprehensive factorization for internal groupoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 28.3 (1987): 197-226. <http://eudml.org/doc/91404>.

@article{Bourn1987,
author = {Bourn, Dominique},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {exact category; simplicial objects; discrete fibration; internal groupoids; shift functor; split epimorphisms; adjoint lifting theorem for groupoids},
language = {eng},
number = {3},
pages = {197-226},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The shift functor and the comprehensive factorization for internal groupoids},
url = {http://eudml.org/doc/91404},
volume = {28},
year = {1987},
}

TY - JOUR
AU - Bourn, Dominique
TI - The shift functor and the comprehensive factorization for internal groupoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1987
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 28
IS - 3
SP - 197
EP - 226
LA - eng
KW - exact category; simplicial objects; discrete fibration; internal groupoids; shift functor; split epimorphisms; adjoint lifting theorem for groupoids
UR - http://eudml.org/doc/91404
ER -

References

top
  1. 1 M. Barr, Exact categories, Lecture Notes in Math, 236, Springer (1971), 1-120, Zbl0223.18010
  2. 2, D. Bourn, La tour de fibrations exactes des n-catégories, Cahiers Top. at Geom. Diff, XXV-4 (1984), 327-351, Zbl0562.18007MR789133
  3. 3, D. Bourn, a) Une théorie de cohomologie pour les catégories exactes, C.R.A.S., Paris Série A, 303 (1986), 173-176, Zbl0593.18009MR854727
  4. b) Higher cohomology groups as classes of principal group actions, Preprint, Université de Picardie, 1985, 
  5. 4, D. Bourn, Another denormalization theorem for abelian chain complexes, Preprint 1984 (to appear), Zbl0716.18003MR1075339
  6. 5, C. Cassidy, M. Hebert & G.M. Kelly, Reflective subcategories, Iocalizations, and factorization systems, J. Austral. Math. Soc, Ser, A, 38 (1985), 287-329, Zbl0573.18002MR779198
  7. 6, J.W. Duskin, Simplicial methods and the interpretation of 'triple' cohomology, Mem. A. M. S. Vol, 3, n' 163 (1975), Zbl0376.18011MR393196
  8. 7, J.W. Duskin, Higher dimensional torsors and the cohomology of topoi; the abelian theory, Lecture Notes in Math, 753, Springer (1979), Zbl0444.18014MR555549
  9. 8, S., Eilenberg& S., Mac Lane, On the groups H(π,n), I. Ann. of Math, 58 (1953), 55-106, Zbl0050.39304
  10. 9, P.J. Freyd & G.M. Kelly, Categories of continuous functors, I, J. Pure & Appl. Algebra2 (1972), 169-191. Zbl0257.18005MR322004
  11. 10 P., Glenn, Realization of cohomology classes in arbitrary exact categories, J, Pure & Appl, Algebra25 (1982), 33-105, Zbl0487.18015MR660389
  12. 11, L. Illusie, Complexe cotangent et deformations, II, Lecture Notes in Math, 283, Springer (1972), Zbl0238.13017MR491681
  13. 12, P.T. Johnstone, Topos Theory, Academic Press, 1977, Zbl0368.18001MR470019
  14. 13, R. Street & R.F.C. Walters, The comprehensive factorization of a functor, Bul. of the A.M.S. vol. 75, n°5 (1973), 935-941, Zbl0274.18001MR346027
  15. 14 W. Tholen, Factorization, localization and the orthogonal subcategory problem, Math. Nachr, 114 (1983), 63-85, Zbl0553.18003MR745048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.