Higher fundamental functors for simplicial sets

Marco Grandis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)

  • Volume: 42, Issue: 2, page 101-136
  • ISSN: 1245-530X

How to cite

top

Grandis, Marco. "Higher fundamental functors for simplicial sets." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.2 (2001): 101-136. <http://eudml.org/doc/91642>.

@article{Grandis2001,
author = {Grandis, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {adjoint functors; van Kampen theorem; symmetric simplicial set; fundamental groupoids; nerve; directed homotopy; simplicial sets},
language = {eng},
number = {2},
pages = {101-136},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Higher fundamental functors for simplicial sets},
url = {http://eudml.org/doc/91642},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Grandis, Marco
TI - Higher fundamental functors for simplicial sets
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 2
SP - 101
EP - 136
LA - eng
KW - adjoint functors; van Kampen theorem; symmetric simplicial set; fundamental groupoids; nerve; directed homotopy; simplicial sets
UR - http://eudml.org/doc/91642
ER -

References

top
  1. [1] F.A.A. Al-Agl - R. Brown - R. Steiner, Multiple categories: the equivalence of a globular and a cubical approach, at: http://arXiv.org/abs/math.CT/0007009. Zbl1013.18003
  2. [2] J. Adamek - J. Rosicky, Locally presentable and accessible categories, Cambridge Univ. Press, Cambridge, 1994. Zbl0795.18007MR1294136
  3. [3] M.A. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. in Math.136 (1997), 39-103. Zbl0912.18006MR1623672
  4. [4] R. Brown - P.J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra21 (1981), 233-260. Zbl0468.55007MR617135
  5. [5] R. Brown - P.J. Higgins, Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra22 (1981), 11-41. Zbl0475.55009MR621285
  6. [6] R. Brown - P.J. Higgins, The equivalence of ∞-groupoids and crossed complexes, Cahiers Topologie Géom. Diff. Catég.22 (1981), 371-386. Zbl0487.55007
  7. [7] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc.7 (1972), 1-76. Zbl0252.18001MR396714
  8. [8] P. Gabriel - F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics221, Springer1971. Zbl0225.18004MR327863
  9. [9] M. Grandis, Cubical monads and their symmetries, in: Proc. of the Eleventh Intern. Conf. on Topology, Trieste1993, Rend. Ist. Mat. Univ. Trieste25 (1993), 223-262. Zbl0834.55012MR1346324
  10. [10] M. Grandis, Categorically algebraic foundations for homotopical algebra, Appl. Categ. Structures5 (1997), 363-413. Zbl0906.55015MR1478526
  11. [11] M. Grandis, An intrinsic homotopy theory for simplicial complexes, with applications to image analysis, Appl. Categ. Structures, to appear. Zbl0994.55011MR1891107
  12. [12] M. Grandis, Simplicial toposes and combinatorial homotopy, Dip. Mat. Univ.Genova, Preprint 400 (1999). 
  13. [13] A. Grothendieck, Pursuing stalks, unpublished manuscript, 1983. 
  14. [14] K.A. Hardie - K.H. Kamps - R.W. Kieboom, A homotopy 2-groupoid of a Hausdorff space, Appl. Categ. Structures8 (2000), 209-234. Zbl0966.55010MR1785844
  15. [15] K.A. Hardie - K.H. Kamps - R.W. Kieboom, A homotopy bigroupoid of a topological space, Appl. Categ. Structures, to appear. Zbl0987.18006
  16. [16] M. Johnson - R.F.C. Walters, On the nerve of an n-category, Cahiers Topologie Géom. Diff. Catég.28 (1987), 257-282. Zbl0662.18006MR926546
  17. [17] D.M. Kan, Adjoint functors, Trans. Amer. Math. Soc.87 (1958), 294-329. Zbl0090.38906MR131451
  18. [18] D.M. Kan, Functors involving c.s.s. complexes, Trans. Amer. Math. Soc.87 (1958), 330-346. Zbl0090.39001MR131873
  19. [19] F.W. Lawvere, Toposes generated by codiscrete objects, in combinatorial topology and functional analysis, Notes for Colloquium lectures given at North Ryde, NSW, Aus (1988), at Madison, Wisconsin, USA (1989), and at Seminario Matematico e Fisico, Milano, Italy (1992). 
  20. [20] Mac Lane, Natural associativity and commutativity, Rice Univ. Studies42 (1963), 28-46. Zbl0244.18008MR170925
  21. [21] S. Mac Lane, Categories for the working mathematician, Springer1971. Zbl0906.18001MR1712872
  22. [22] S. Mac Lane - I. Moerdijk, Sheaves in geometry and logic, Springer1992. Zbl0822.18001MR1300636
  23. [23] M. Makkai - R. Paré, Accessible categories: the foundations of categorical model theory, Contemp. Math.104, Amer. Math. Soc., Providence, RI, 1989. Zbl0703.03042MR1031717
  24. [24] J.P. May, Simplicial objects in algebraic topology, Van Nostrand1967. Zbl0165.26004MR222892
  25. [25] J.D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc.108 (1963), 275-292. Zbl0114.39402MR158400
  26. [26] J.D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc.108 (1963), 293-312. Zbl0114.39402MR158400
  27. [27] R. Street, The algebra of oriented simplexes, J. Pure Appl. Algebra49 (1987), 283-385. Zbl0661.18005MR920944
  28. [28] Z. Tamsamani, Equivalence de la théorie homotopique des n-groupoïdes et celle des espaces topologiques n-tronqués, Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.