Kähler-Einstein metrics singular along a smooth divisor
Journées équations aux dérivées partielles (1999)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topMazzeo, Raffe. "Kähler-Einstein metrics singular along a smooth divisor." Journées équations aux dérivées partielles (1999): 1-10. <http://eudml.org/doc/93383>.
@article{Mazzeo1999,
abstract = {In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor $D$. We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical or edge singularities and then some discussion of the new elements of the proof in this context.},
author = {Mazzeo, Raffe},
journal = {Journées équations aux dérivées partielles},
keywords = {Kähler-Einstein metrics; compact Kähler manifolds; incomplete singularity along a smooth divisor},
language = {eng},
pages = {1-10},
publisher = {Université de Nantes},
title = {Kähler-Einstein metrics singular along a smooth divisor},
url = {http://eudml.org/doc/93383},
year = {1999},
}
TY - JOUR
AU - Mazzeo, Raffe
TI - Kähler-Einstein metrics singular along a smooth divisor
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 10
AB - In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor $D$. We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical or edge singularities and then some discussion of the new elements of the proof in this context.
LA - eng
KW - Kähler-Einstein metrics; compact Kähler manifolds; incomplete singularity along a smooth divisor
UR - http://eudml.org/doc/93383
ER -
References
top- [1] J.-P. Bourguignon, éd Preuve de la Conjecture de Calabi, Astérisque Vol. 58, Soc. Math. France, Paris (1978).
- [2] A. Byde, Thesis, Stanford University (2000). In preparation.
- [3] S.Y. Cheng and S.T. Yau, On the existence of complete Kähler metrics on non-compact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 No. 4 (1980), 507-544. Zbl0506.53031MR82f:53074
- [4] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. Zbl0289.32012MR50 #2562
- [5] C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone manifolds and hyperbolic Dehn surgery, Jour. Diff. Geom. 48 (1998), 1-59. Zbl0919.57009MR99b:57030
- [6] D. Joyce, Asymptotically locally Euclidean metrics with holonomy SU(m), XXX Mathematics Archive Preprint AG/9905041. Zbl1009.53052
- [7] D. Joyce, Quasi-ALE metrics with holonomy SU(m) and Sp(m), XXX Mathematics Archive Preprint AG/9905043. Zbl0981.58019
- [8] R. Kobayashi, Einstein-Kähler V metrics on open Satake V -surfaces with isolated quotient singularities, Math. Ann. 272 (1985), 385-398. Zbl0556.14019MR87b:32050
- [9] J. Lee and R. Melrose, Boundary behaviour of the complex Monge-Ampere equation, Acta Math. 148 (1982), 159-192. Zbl0496.35042MR84e:58078
- [10] R. McOwen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 No. 1 (1988), 222-224. Zbl0657.30033MR89m:30089
- [11] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Diff. Eq., 16 No. 10 (1991), 1616-1664. Zbl0745.58045MR93d:58152
- [12] R. Mazzeo, Regularity for the singular Yamabe problem, Indiana Univ. Math. Jour. 40 (1991), 1277-1299. Zbl0770.53032MR92k:53071
- [13] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators. Wiley, Chichester - New York, 1998. Zbl0907.35146MR99m:35281
- [14] G. Tian and S.T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, in Mathematical Aspects of String Theory (S.T. Yau, ed.), World Scientific (1987), 574-628. Zbl0682.53064MR915840
- [15] G. Tian and S.T. Yau, Complete Kähler manifolds with zero Ricci curvature I, J. Amer. Math. Soc., 3 No. 3 (1990), 579-609. Zbl0719.53041MR91a:53096
- [16] G. Tian and S.T. Yau, Complete Kähler manifolds with zero Ricci curvature II, Invent. Math. 106 No. 1 (1991), 27-60. Zbl0766.53053MR92j:32028
- [17] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 No. 2 (1991), 793-821. Zbl0724.53023MR91h:53059
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.