The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A note on the paper ``Smoothness and the property of Kelley''

Gerardo AcostaÁlgebra Aguilar-Martínez — 2007

Commentationes Mathematicae Universitatis Carolinae

Let X be a continuum. In Proposition 31 of J.J. Charatonik and W.J. Charatonik, , Comment. Math. Univ. Carolin. (2000), no. 1, 123–132, it is claimed that L ( X ) = p X S ( p ) , where L ( X ) is the set of points at which X is locally connected and, for p X , a S ( p ) if and only if X is smooth at p with respect to a . In this paper we show that such equality is incorrect and that the correct equality is P ( X ) = p X S ( p ) , where P ( X ) is the set of points at which X is connected im kleinen. We also use the correct equality to obtain some results concerning...

Page 1

Download Results (CSV)