The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Wavelet method for option pricing under the two-asset Merton jump-diffusion model

Černá, Dana — 2021

Programs and Algorithms of Numerical Mathematics

This paper examines the pricing of two-asset European options under the Merton model represented by a nonstationary integro-differential equation with two state variables. For its numerical solution, the wavelet-Galerkin method combined with the Crank-Nicolson scheme is used. A drawback of most classical methods is the full structure of discretization matrices. In comparison, the wavelet method enables the approximation of discretization matrices with sparse matrices. Sparsity is essential for the...

Valuation of two-factor options under the Merton jump-diffusion model using orthogonal spline wavelets

Černá, Dana — 2023

Programs and Algorithms of Numerical Mathematics

This paper addresses the two-asset Merton model for option pricing represented by non-stationary integro-differential equations with two state variables. The drawback of most classical methods for solving these types of equations is that the matrices arising from discretization are full and ill-conditioned. In this paper, we first transform the equation using logarithmic prices, drift removal, and localization. Then, we apply the Galerkin method with a recently proposed orthogonal cubic spline-wavelet...

Wavelet bases for the biharmonic problem

Bímová, DanielaČerná, DanaFiněk, Václav — 2013

Programs and Algorithms of Numerical Mathematics

In our contribution, we study different Riesz wavelet bases in Sobolev spaces based on cubic splines satisfying homogeneous Dirichlet boundary conditions of the second order. These bases are consequently applied to the numerical solution of the biharmonic problem and their quantitative properties are compared.

Quantitative properties of quadratic spline wavelet bases in higher dimensions

Černá, DanaFiněk, VáclavŠimůnková, Martina — 2015

Programs and Algorithms of Numerical Mathematics

To use wavelets efficiently to solve numerically partial differential equations in higher dimensions, it is necessary to have at one’s disposal suitable wavelet bases. Ideal wavelets should have short supports and vanishing moments, be smooth and known in closed form, and a corresponding wavelet basis should be well-conditioned. In our contribution, we compare condition numbers of different quadratic spline wavelet bases in dimensions d = 1, 2 and 3 on tensor product domains (0,1)^d.

A quadratic spline-wavelet basis on the interval

Černá, DanaFiněk, VáclavŠimůnková, Martina — 2013

Programs and Algorithms of Numerical Mathematics

In signal and image processing as well as in numerical solution of differential equations, wavelets with short support and with vanishing moments are important because they have good approximation properties and enable fast algorithms. A B-spline of order m is a spline function that has minimal support among all compactly supported refinable functions with respect to a given smoothness. And recently, B. Han and Z. Shen constructed Riesz wavelet bases of L 2 ( ) with m vanishing moments based on B-spline...

On the computation of scaling coefficients of Daubechies' wavelets

Dana ČernáVáclav Finěk — 2004

Open Mathematics

In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.

Approximate multiplication in adaptive wavelet methods

Dana ČernáVáclav Finěk — 2013

Open Mathematics

Cohen, Dahmen and DeVore designed in [Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 2001, 70(233), 27–75] and [Adaptive wavelet methods II¶beyond the elliptic case, Found. Comput. Math., 2002, 2(3), 203–245] a general concept for solving operator equations. Its essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l 2-problem, finding the convergent iteration process for the l 2-problem and finally...

On the exact values of coefficients of coiflets

Dana ČernáVáclav FiněkKarel Najzar — 2008

Open Mathematics

In 1989, R. Coifman suggested the design of orthonormal wavelet systems with vanishing moments for both scaling and wavelet functions. They were first constructed by I. Daubechies [15, 16], and she named them coiflets. In this paper, we propose a system of necessary conditions which is redundant free and simpler than the known system due to the elimination of some quadratic conditions, thus the construction of coiflets is simplified and enables us to find the exact values of the scaling coefficients...

Page 1

Download Results (CSV)