A complete characterization of proper holomorphic mappings between domains from the class of all pseudoconvex Reinhardt domains in ℂ² with the logarithmic image equal to a strip or a half-plane is given.
We present a result on the existence of some kind of peak functions for ℂ-convex domains and for the symmetrized polydisc. Then we apply the latter result to show the equivariance of the set of peak points for A(D) under proper holomorphic mappings. Additionally, we present a description of the set of peak points in the class of bounded pseudoconvex Reinhardt domains.
In 1984 L. Lempert showed that the Lempert function and the Carathéodory distance coincide on non-planar bounded strongly linearly convex domains with real-analytic boundaries. Following his paper, we present a slightly modified and more detailed version of the proof. Moreover, the Lempert Theorem is proved for non-planar bounded strongly linearly convex domains.
Download Results (CSV)