The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This work introduces the concept of an M-complete approximate identity (M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cai in Y, then X is a complete M-ideal in Y. It is proved, using ’special’ M-cai’s, that if J is a nuclear ideal in a C*-algebra A, then J is completely complemented in Y for any (isomorphically) locally reflexive operator space Y with J ⊂ Y ⊂ A and...
We characterize the weak-star point of continuity property for subspaces of dual spaces with separable predual and we deduce that the weak-star point of continuity property is determined by subspaces with a Schauder basis in the natural setting of dual spaces of separable Banach spaces. As a consequence of the above characterization we show that a dual space has the Radon-Nikodym property if, and only if, every seminormalized topologically weak-star null tree has a boundedly complete branch, which...
Download Results (CSV)