The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we show that the ball-measure of non-compactness of a norm bounded subset of an Orlicz modular space L-Psi is equal to the limit of its n-widths. We also obtain several inequalities between the measures of non-compactness and the limit of the n-widths for modular bounded subsets of L-Psi which do not have Delta-2-condition. Minimum conditions on Psi to have such results are specified and an example of such a function Psi is provided.
The behavior of the essential spectrum and the essential norm under (complex/real) interpolation is investigated. We extend an example of Albrecht and Müller for the spectrum by showing that in complex interpolation the essential spectrum of an interpolated operator is also in general a discontinuous map of the parameter θ. We discuss the logarithmic convexity (up to a multiplicative constant) of the essential norm under real interpolation, and show that this holds provided certain compact approximation...
Download Results (CSV)