In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the theory is given. Results are proved for , , BMO, and Lipschitz spaces.
In this paper we show that the fractional integral of order α on spaces of homogeneous type embeds into a certain Orlicz space. This extends results of Trudinger [T], Hedberg [H], and Adams-Bagby [AB].
We introduce Sobolev spaces for 1 < p < ∞ and small positive α on spaces of homogeneous type as the classes of functions f in with fractional derivative of order α, , as introduced in [2], in . We show that for small α, coincides with the continuous version of the Triebel-Lizorkin space as defined by Y. S. Han and E. T. Sawyer in [4]. To prove this result we give a more general definition of ε-families of operators on spaces of homogeneous type, in which the identity operator is...
We use the Calderón Maximal Function to prove the Kato-Ponce Product Rule Estimate and the Christ-Weinstein Chain Rule Estimate for the Hajłasz gradient on doubling measure metric spaces.
The main purpose of this paper is to investigate the behavior of fractional integral operators associated to a measure on a metric space satisfying just a mild growth condition, namely that the measure of each ball is controlled by a fixed power of its radius. This allows, in particular, non-doubling measures. It turns out that this condition is enough to build up a theory that contains the classical results based upon the Lebesgue measure on Euclidean space and their known extensions for doubling...
In the setting of a metric measure space (X, d, μ) with an n-dimensional Radon measure μ, we give a necessary and sufficient condition for the boundedness of Calderón-Zygmund operators associated to the measure μ on Lipschitz spaces on the support of μ. Also, for the Euclidean space R with an arbitrary Radon measure μ, we give several characterizations of Lipschitz spaces on the support of μ, (α,μ), in terms of mean oscillations involving μ. This allows us to view the "regular" BMO space of X. Tolsa...
In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before.
We show that these operators act on Lipschitz spaces as in the classical cases....
Download Results (CSV)