The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soient un espace localement compact une mesure de Radon positive sur et l’algèbre des fonctions réelles bornées t -mesurables définies sur . Pour , on écrit si et coïncident localement presque partout. On appelle relèvement de toute représentation de l’algèbre dans l’algèbre transformant 1 en 1 et telle que: et si . Un relèvement de est dit fort si pour toute . Les principaux résultats de cet article sont les théorèmes 1, 2, 3, 4. Les théorèmes 1 et 2 concernent...
Download Results (CSV)