Supertauberian operators and perturbations.
Upper semi-Fredholm operators and tauberian operators in Banach spaces admit the following perturbative characterizations [6], [2]: An operator T: X --> Y is upper semi-Fredholm (tauberian) if and only if for every compact operator K: X --> Y the kernel N(T+K) is finite dimensional (reflexive). In [7] Tacon introduces an intermediate class between upper semi-Fredholm operators and tauberian operators, the supertauberian operators, and he studies this class using non-standard analysis....