Sur la résolution de l'équation intégrale à noyau symétrique
The article contains no abstract
The article contains no abstract
The class of linear (resp. quadratic) mappings over a commutative ring is determined by a set of equation-type relations. For the class of homogeneous polynomial mappings of degree m ≥ 3 it is so over a field, and over a ring there exists a smallest equationally definable class of mappings containing the preceding one. It is proved that generating relations determining that class can be chosen to be strong relations (that is, of the same form over all commutative rings) if{f} m ≤ 5. These relations...
Page 1