Let A and B be semisimple commutative Banach algebras with bounded approximate identities. We investigate the problem of extending a homomorphism φ: A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B, respectively. Various sufficient conditions in terms of B (or B and φ) are given that allow the construction of such extensions. We exhibit a number of classes of Banach algebras to which these criteria apply. In addition, we prove a polar decomposition for homomorphisms from...
Let G be a locally compact group and B(G) the Fourier-Stieltjes algebra of G. Pursuing our investigations of power bounded elements in B(G), we study the extension property for power bounded elements and discuss the structure of closed sets in the coset ring of G which appear as 1-sets of power bounded elements. We also show that L¹-algebras of noncompact motion groups and of noncompact IN-groups with polynomial growth do not share the so-called power boundedness property. Finally, we give a characterization...
Let G be a locally compact group. We shall study the Banach algebras which are the group algebra L¹(G) and the measure algebra M(G) on G, concentrating on their second dual algebras. As a preliminary we shall study the second dual C₀(Ω)” of the C*-algebra C₀(Ω) for a locally compact space Ω, recognizing this space as C(Ω̃), where Ω̃ is the hyper-Stonean envelope of Ω.
We shall study the C*-algebra of bounded Borel functions on Ω, and we shall determine the exact cardinality of a variety of subsets...
Download Results (CSV)