The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Intersections of essential minimal prime ideals

A. Taherifar — 2014

Commentationes Mathematicae Universitatis Carolinae

Let 𝒵 ( ) be the set of zero divisor elements of a commutative ring R with identity and be the space of minimal prime ideals of R with Zariski topology. An ideal I of R is called strongly dense ideal or briefly s d -ideal if I 𝒵 ( ) and I is contained in no minimal prime ideal. We denote by R K ( ) , the set of all a R for which D ( a ) ¯ = V ( a ) ¯ is compact. We show that R has property ( A ) and is compact if and only if R has no s d -ideal. It is proved that R K ( ) is an essential ideal (resp., s d -ideal) if and only if is an almost locally compact...

Page 1

Download Results (CSV)