The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a countable ordinal α we denote by the class of separable, reflexive Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by α. We show that each admits a separable, reflexive universal space. We also show that spaces in the class embed into spaces of the same class with a basis. As a consequence we deduce that each is analytic in the Effros-Borel structure of subspaces of C[0,1].
For every α < ω₁ we establish the existence of a separable Banach space whose Szlenk index is and which is universal for all separable Banach spaces whose Szlenk index does not exceed . In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with Tsirelson type upper estimates.
Download Results (CSV)