The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Some weighted inequalities for general one-sided maximal operators

F. Martín-ReyesA. de la Torre — 1997

Studia Mathematica

We characterize the pairs of weights on ℝ for which the operators M h , k + f ( x ) = s u p c > x h ( x , c ) ʃ x c f ( s ) k ( x , s , c ) d s are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p < q < ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on ( x , c ) : x < c , while k is defined on ( x , s , c ) : x < s < c . If h ( x , c ) = ( c - x ) - β , k ( x , s , c ) = ( c - s ) α - 1 , 0 ≤ β ≤ α ≤ 1, we obtain the operator M α , β + f = s u p c > x 1 / ( c - x ) β ʃ x c f ( s ) / ( c - s ) 1 - α d s . For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal weights and...

One-sided discrete square function

A. de la TorreJ. L. Torrea — 2003

Studia Mathematica

Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average A f ( x ) = 2 - n x x + 2 f . The square function is defined as S f ( x ) = ( n = - | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 . The local version of this operator, namely the operator S f ( x ) = ( n = - 0 | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps L p into itself (p > 1) and L into BMO. We prove that the operator S not only maps L into BMO but it also maps BMO into BMO. We also prove that the L p boundedness still holds...

On the best ranges for A p + and R H r +

María Silvina RiverosA. de la Torre — 2001

Czechoslovak Mathematical Journal

In this paper we study the relationship between one-sided reverse Hölder classes R H r + and the A p + classes. We find the best possible range of R H r + to which an A 1 + weight belongs, in terms of the A 1 + constant. Conversely, we also find the best range of A p + to which a R H + weight belongs, in terms of the R H + constant. Similar problems for A p + , 1 < p < and R H r + , 1 < r < are solved using factorization.

Page 1

Download Results (CSV)