A dominated ergodic estimate for spaces with weights
We characterize the pairs of weights on ℝ for which the operators are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p < q < ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on , while k is defined on . If , , 0 ≤ β ≤ α ≤ 1, we obtain the operator . For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal weights and...
Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average . The square function is defined as . The local version of this operator, namely the operator , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps into itself (p > 1) and into BMO. We prove that the operator S not only maps into BMO but it also maps BMO into BMO. We also prove that the boundedness still holds...
In this paper we study the relationship between one-sided reverse Hölder classes and the classes. We find the best possible range of to which an weight belongs, in terms of the constant. Conversely, we also find the best range of to which a weight belongs, in terms of the constant. Similar problems for , and , are solved using factorization.
Page 1