The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we investigate the class of all modular GMS-algebras which contains the class of MS-algebras. We construct modular GMS-algebras from the variety by means of -quadruples. We also characterize isomorphisms of these algebras by means of -quadruples.
The concept of Boolean filters in p-algebras is introduced. Some properties of Boolean filters are studied. It is proved that the class of all Boolean filters BF(L) of a quasi-modular p-algebra L is a bounded distributive lattice. The Glivenko congruence Φ on a p-algebra L is defined by (x,y) ∈ Φ iff x** = y**. Boolean filters [Fₐ), a ∈ B(L) , generated by the Glivenko congruence classes Fₐ (where Fₐ is the congruence class [a]Φ) are described in a quasi-modular p-algebra L. We observe that the...
Some properties of filters on a lattice L are studied with respect to a congruence on L. The notion of a θ-filter of L is introduced and these filters are then characterized in terms of classes of θ. For distributive L, an isomorphism between the lattice of θ-filters of L and the lattice of filters of is obtained.
A simple triple construction of principal MS-algebras is given which is parallel to the construction of principal -algebras from principal triples presented by the third author in [Haviar, M.: Construction and affine completeness of principal p-algebras Tatra Mountains Math. 5 (1995), 217–228.]. It is shown that there exists a one-to-one correspondence between principal MS-algebras and principal MS-triples. Further, a triple construction of a class of decomposable MS-algebras that includes the...
Download Results (CSV)