The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem
in Ω,
where Ω is a bounded open domain of , N ≥ 2 and is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to .
We study a class of anisotropic nonlinear elliptic equations with variable exponent p⃗(·) growth. We obtain the existence of entropy solutions by using the truncation technique and some a priori estimates.
Download Results (CSV)